
Martingale+SNC
文章平均质量分 68
Martingale+SNC
Anne033
本博客有较多转载内容,目的是为自己学习备查,已尽量注明转载地址,若有侵权,请告知,必删。
展开
-
martingale、markov chain、Monte Carlo、MCMC
鞅(martingale)在概率论中,鞅(martingale)是满足下述条件的随机过程:已知过去某一 时刻 s 以及之前所有时刻的观测值,若某一时刻 t 的观测值的条件期望等于过去某一时刻 s 的观测值,则称这一随机过程是鞅。而于博弈论中,鞅经常用来作为公平博弈的数学模型。鞅的定义鞅分上鞅、下鞅和鞅。鞅:E[Xt | Fs] = Xs (t>s);上鞅:E[Xt | Fs] < Xs (t>s);下鞅:E[Xt | Fs] > Xs (t>s)。通俗理解:Fs表示你在转载 2020-10-04 17:08:57 · 5577 阅读 · 0 评论 -
wald
1. Wald’s equationLet (Xn)n∈N(X_n)_{n∈ℕ}(Xn)n∈N be a sequence of real-valued, independent and identically distributed (i.i.d.) random variables and let NNN be a nonnegative integer-value random variable that is independent of the sequence (Xn)n∈N(X_n)_{转载 2021-03-07 19:19:43 · 731 阅读 · 0 评论 -
Radon–Nikodym theorem
In mathematics, the Radon–Nikodym theorem is a result in measure theory that expresses the relationship between two measures defined on the same measurable space. A measure is a set function that assigns a consistent magnitude to the measurable subsets of转载 2021-03-08 10:13:21 · 1104 阅读 · 0 评论 -
随机游走 Random Walk
随机游走(英语:Random Walk,缩写为 RW),是一种数学统计模型,它是一连串的轨迹所组成,其中每一次都是随机的。[1][2]它能用来表示不规则的变动形式,如同一个人酒后乱步,所形成的随机过程记录。1905年,由卡尔·皮尔逊首次提出。[3]随机游走可以在各种空间上进行:通常研究的包括图,整数或实数线,向量空间,曲面,高维的黎曼流形,以及群,有限生成群或李群。在最简单的情况中,时间是离散的,随机游走的路径为一个由自然数索引的随机变量序列(Xt) = (X1, X2, …)。但是,也可以定义在随机时间转载 2021-03-07 18:26:24 · 7090 阅读 · 0 评论 -
Cauchy-Schwarz不等式
1. Cauchy不等式##2. 推广:Ho¨lderH\ddot{o}lderHo¨lder不等式3. Cauchy-Schwarz不等式结论:任意两个向量的内积(点乘)的模平方,必定小于或等于这两个向量各自的模的乘积。https://www.jianshu.com/p/77f9607d88dfhttps://zhuanlan.zhihu.com/p/45928857...转载 2020-11-03 15:12:51 · 12306 阅读 · 0 评论 -
Fubini‘s theorem
In mathematical analysis Fubini’s theorem, introduced by Guido Fubini in 1907, is a result that gives conditions under which it is possible to compute a double integral by using an iterated integral. One may switch the order of integration if the double in转载 2021-03-08 13:42:15 · 4406 阅读 · 0 评论 -
随机过程及其稳态stability
1. 随机过程举例样本空间与时间函数的对应2. 平稳性是什么无论是严平稳还是(弱)平稳,实际上刻画的都是时间序列的统计性质关于时间平移的不变性。严平稳要求比较严格,需要所有的统计性质(也就是其有限维分布函数族)都是关于时间平移不变的,而弱平稳只需要一阶矩与二阶矩(以及协方差)是时间平移不变的。3. 为什么需要平稳的时间序列因为我们研究时间序列很重要的一个应用(或者出发点),是希望通过时间序列的历史数据来得到其未来的一些预测。换句话说,我们希望时间序列在历史数据上的一些性质,在将来保持转载 2021-07-15 14:56:23 · 5138 阅读 · 0 评论 -
双子(Dioid)
双子代数是若其对任意无限多元的 “和”封闭且乘法对此无限和具分配律。https://baike.baidu.com/item/%E5%8F%8C%E5%AD%90%E4%BB%A3%E6%95%B0转载 2021-07-15 08:04:39 · 484 阅读 · 0 评论 -
初识斯蒂尔杰斯积分(Stieltjes integral)
https://blog.youkuaiyun.com/Northernland/article/details/83051415转载 2021-07-15 07:48:31 · 2268 阅读 · 0 评论 -
martingale与Markov Process的关系
鞅过程与马尔科夫过程是什么关系?1.鞅代表的是公平游戏,马尔可夫过程侧重过程无记忆性总而言之:鞅和马尔可夫过程没有包含的关系。因为鞅代表的是公平游戏,而马尔可夫过程侧重过程无记忆性。两者没有内在联系。注:本文将试图从直观上解释,因此会略去一些过于严谨而不影响直观理解的条件。定义:鞅(martingale):如果随机过程X(t)满足对任意的s<t,都满足[公式],则称为鞅。直观上而言,已知鞅过程在某一时刻的值时,其任意之后时刻的条件期望为这一时刻的值。从赌徒的角度来看,它是一个公平的游戏。转载 2021-06-15 20:42:40 · 1800 阅读 · 0 评论 -
Lindley equation
In probability theory, the Lindley equation, Lindley recursion or Lindley processes is a discrete-time stochastic process An where n takes integer values and:An+1=max(0,An+Bn)A_n + 1 = max(0, A_n + B_n)An+1=max(0,An+Bn).Processes of this form can be u转载 2021-04-09 10:36:06 · 582 阅读 · 0 评论 -
The Optional Stopping Theorem
In probability theory, the optional stopping theorem (or Doob’s optional sampling theorem) says that, under certain conditions, the expected value of a martingale at a stopping time is equal to its initial expected value. Since martingales can be used to m转载 2021-03-19 10:05:30 · 869 阅读 · 0 评论 -
Boole‘s,Doob‘s inequality,中心极限定理Central Limit Theorem,Kolmogorov extension theorem, Lebesgue‘s domin
1. Boole’s inequalityIn probability theory, Boole’s inequality, also known as the union bound, says that for any finite or countable set of events, the probability that at least one of the events happens is no greater than the sum of the probabilities of转载 2021-02-06 07:15:21 · 1781 阅读 · 0 评论 -
指数矩阵(exponential matrix)
http://www.mashangxue123.com/%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0/1756604500.html转载 2021-02-01 07:10:29 · 7645 阅读 · 0 评论 -
怎样更好地理解并记忆泰勒展开式
本段的核心思想是仿造。当我们想要仿造一个东西的时候,无形之中都会按照上文提到的思路,即先保证大体上相似,再保证局部相似,再保证细节相似,再保证更细微的地方相似……不断地细化下去,无穷次细化以后,仿造的东西将无限接近真品。真假难辨。这是每个人都明白的生活经验。一位物理学家,把这则生活经验应用到他自己的研究中,则会出现下列场景:一辆随意行驶的小车,走出了一个很诡异的轨迹曲线:物理学家觉得这段轨迹很有意思,也想开车走一段一摸一样的轨迹。既然是复制,他把刚才关于“仿造”生活经验应用到这里,提出了一个解决办法:转载 2021-01-27 20:14:21 · 1092 阅读 · 0 评论 -
Filtration, σ-algebras
filtration在钱敏平老师和龚光鲁老师的《随机过程论》中直接称其为非降的KaTeX parse error: Undefined control sequence: \sigmma at position 1: \̲s̲i̲g̲m̲m̲a̲代数族。如图。一般叫σ\sigmaσ-代数流或σ\sigmaσ-域流在鞅论中的花体FtF_tFt,即filtration中文翻译成“滤波”或“滤子”,它在本质上是一个非降子σ\sigmaσ-代数。这个名词的最早来源不是很清楚(有人说是从描述股票的价格变化过程转载 2021-01-27 16:05:30 · 2385 阅读 · 0 评论