Description
Consider equations having the following form:
a1x1 3+ a2x2 3+ a3x3 3+ a4x4 3+ a5x5 3=0
The coefficients are given integers from the interval [-50,50].
It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}.
Determine how many solutions satisfy the given equation.
a1x1 3+ a2x2 3+ a3x3 3+ a4x4 3+ a5x5 3=0
The coefficients are given integers from the interval [-50,50].
It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}.
Determine how many solutions satisfy the given equation.
Input
The only line of input contains the 5 coefficients a1, a2, a3, a4, a5, separated by blanks.
Output
The output will contain on the first line the number of the solutions for the given equation.
Sample Input
37 29 41 43 47
Sample Output
654
题目链接:http://poj.org/problem?id=1840
解法类型:hash
解题思路:对方程变下形就可以了,然后直接建立hash表。这里有很多建立hash表的方法,可以直接暴力建立没有冲突情况的hash表,但内存会消耗很多。因此可以在建立时加冲突解决情况的处理,对其值取模,建立闭散性的hash表,极大地降低了内存的使用率,但同时带来了时间消耗的增加。
算法实现:
//STATUS:C++_AC_2188MS_7948K
#include<stdio.h>
#include<string.h>
const int MAXN=999991;
int hash(int s);
int num[MAXN],saves[MAXN],p[110];
int main()
{
// freopen("in.txt","r",stdin);
int i,x1,x2,x3,x4,x5,a1,a2,a3,a4,a5,sum,t,ways;
for(i=-50;i<0;i++) //初始化
p[i+50]=i*i*i;
for(i=1;i<=50;i++)
p[i+49]=i*i*i;
while(~scanf("%d%d%d%d%d",&a1,&a2,&a3,&a4,&a5))
{
memset(num,0,sizeof(num));
memset(saves,0,sizeof(saves));
for(x1=0;x1<100;x1++) //hash表的构建
for(x2=0;x2<100;x2++)
for(x3=0;x3<100;x3++){
sum=a1*p[x1]+a2*p[x2]+a3*p[x3];
t=hash(sum);
num[t]++;
saves[t]=sum;
}
ways=0;
for(x4=0;x4<100;x4++) //hash表的查找
for(x5=0;x5<100;x5++){
sum=-(a4*p[x4]+a5*p[x5]);
t=hash(sum);
ways+=num[t];
}
printf("%d\n",ways);
}
return 0;
}
int hash(int s)
{
int t=s%MAXN;
if(t<0)t+=MAXN;
while(num[t]!=0 && saves[t]!=s) //hash表为空或者找到s
t=(t+3)%MAXN; //这里处理不好,会超时,看数据,看RP!
return t;
}
本文介绍了一种利用哈希表解决特定形式五元方程的高效算法。该算法通过预处理和构建哈希表来寻找方程的整数解,有效减少计算时间和资源消耗。
515

被折叠的 条评论
为什么被折叠?



