转自http://blog.youkuaiyun.com/hguisu/article/details/7674195
1.队列
1.1 队列定义
队列(Queue)也是一种运算受限的线性表,它的运算限制与栈不同,是两头都有限制,插入只能在表的一端进行(只进不出),而删除只能在表的另一端进行(只出不进),允许删除的一端称为队尾(rear),允许插入的一端称为队头 (Front)
,队列的操作原则是先进先出的,所以队列又称作FIFO表(First In First Out)
队列的基本运算也有六种:
置空队 :InitQueue(Q)
判队空: QueueEmpty(Q)
判队满: QueueFull(Q)
入队 : EnQueue(Q,x)
出队 : DeQueue(Q)
取队头元素: QueueFront(Q),不同与出队,队头元素仍然保留。
队列也有顺序存储和链式存储两种存储结构,前者称顺序队列,后者为链队。
对于顺序队列,我们要理解"假上溢"的现象。
我们现实中的队列比如人群排队买票,队伍中的人是可以一边进去从另一头出来的,除非地方不够,总不会有"溢出"的现象,相似地,当队列中元素完全充满这个向量空间时,再入队自然就会上溢,如果队列中已没有元素,那么再要出队也会下溢。
那么"假上溢"就是怎么回事呢?
因为在这里,我们的队列是存储在一个向量空间里,在这一段连续的存储空间中,由一个队列头指针和一个尾指针表示这个队列,当头指针和尾指针指向同一个位置时,队列为空,也就是说,队列是由两个指针中间的元素构成的。在队列中,入队和出队并不是象现实中,元素一个个地向前移动,走完了就没有了,而是指针在移动,当出队操作时,头指针向前(即向量空间的尾部)增加一个位置,入队时,尾指针向前增加一个位置,在某种情况下,比如说进一个出一个,两个指针就不停地向前移动,直到队列所在向量空间的尾部,这时再入队的话,尾指针就要跑到向量空间外面去了,仅管这时整个向量空间是空的,队列也是空的,却产生了"上溢"现象,这就是假上溢。
为了克服这种现象造成的空间浪费,我们引入循环向量的概念,就好比是把向量空间弯起来,形成一个头尾相接的环形,这样,当存于其中的队列头尾指针移到向量空间的上界(尾部)时,再加1的操作(入队或出队)就使指针指向向量的下界,也就是从头开始。这时的队列就称循环队列。
通常我们应用的大都是循环队列。由于循环的原因,光看头尾指针重叠在一起我们并不能判断队列是空的还是满的,这时就需要处理一些边界条件,以区别队列是空还是满。方法至少有三种,一种是另设一个布尔变量来判断(就是请别人看着,是空还是满由他说了算),第二种是少用一个元素空间,当入队时,先测试入队后尾指针是不是会等于头指针,如果相等就算队已满,不许入队。第三种就是用一个计数器记录队列中的元素的总数,这样就可以随时知道队列的长度了,只要队列中的元素个数等于向量空间的长度,就是队满。
2.2 队列的顺序存储
顺序存储如图:
由于是顺序存储结构的存储空间是静态分配的,所以在添加数据的时,有可能没有剩余空间的情况。
解决这种“假溢出”情况,使用循环队列。在c语言中,不能用动态分配的一维数组来实现循环队列。若使用循环队列,必须设置最大队列长度,若无法估计最大长度,就使用链式队列。
c实现:
- // Test.cpp : Defines the entry point for the console application.
- //
- #include "stdafx.h"
- #include <stdio.h>
- #include "stdlib.h"
- #include <iostream>
- using namespace std;
- //宏定义
- #define TRUE 1
- #define FALSE 0
- #define OK 1
- #define ERROR 0
- #define INFEASIBLE -1
- #define OVERFLOW -2
- #define QUEUEEMPTY -3
- #define MAX_QUEUE 10 //队列的最大数据元素数目
- typedef int Status;
- typedef int ElemType;
- typedef struct queue{
- ElemType elem[MAX_QUEUE] ; ///假设当数组只剩下一个单元时认为队满
- int front; //队头指针
- int rear; //队尾指针
- }QUEUE;
- /************************************************************************/
- /* 各项基本操作算法。
- */
- /************************************************************************/
- void InitQueue(QUEUE *&Q);
- void EnQueue(QUEUE *Q,ElemType elem);
- void DeQueue(QUEUE *Q,ElemType *elem);
- int QueueEmpty(QUEUE Q);
- /************************************************************************/
- /*
- 初始化
- 直接使用结构体指针变量,必须先分配内存地址,即地址的指针
- */
- /************************************************************************/
- void InitQueue(QUEUE *&Q)
- {
- Q = (QUEUE *) malloc (sizeof(QUEUE));
- Q->front = Q->rear = -1;
- }
- /************************************************************************/
- /* 入队
- */
- /************************************************************************/
- void EnQueue(QUEUE *Q, ElemType elem)
- {
- if((Q->rear+1)% MAX_QUEUE == Q->front) exit(OVERFLOW);
- Q->rear = (Q->rear + 1)%MAX_QUEUE;
- Q->elem[Q->rear] = elem;
- }
- /************************************************************************/
- /* 出队
- */
- /************************************************************************/
- void DeQueue(QUEUE *Q,ElemType *elem)
- {
- if (QueueEmpty(*Q)) exit(QUEUEEMPTY);
- Q->front = (Q->front+1) % MAX_QUEUE;
- *elem=Q->elem[Q->front];
- }
- /************************************************************************/
- /* 获取队头元素内容
- */
- /************************************************************************/
- void GetFront(QUEUE Q,ElemType *elem)
- {
- if ( QueueEmpty(Q) ) exit(QUEUEEMPTY);
- *elem = Q.elem[ (Q.front+1) % MAX_QUEUE ];
- }
- /************************************************************************/
- /* 判断队列Q是否为空
- */
- /************************************************************************/
- int QueueEmpty(QUEUE Q)
- {
- if(Q.front==Q.rear) return TRUE;
- else return FALSE;
- }
- void main()
- {
- QUEUE *Q;
- InitQueue( Q);
- EnQueue( Q, 1);
- EnQueue( Q, 2);
- ElemType e;
- DeQueue( Q,&e);
- cout<<"De queue:"<<e;
- }
注意:InitQueue(QUEUE *&Q) 传的是指针的地址。
2.3 链式队列:
- // Test.cpp : Defines the entry point for the console application.
- //
- #include "stdafx.h"
- #include <stdio.h>
- #include "stdlib.h"
- #include <iostream>
- using namespace std;
- //宏定义
- #define TRUE 1
- #define FALSE 0
- #define OK 1
- #define ERROR 0
- #define INFEASIBLE -1
- #define OVERFLOW -2
- #define QUEUEEMPTY -3
- typedef int Status;
- typedef int ElemType;
- typedef struct LNode { //链式队列的结点结构
- ElemType elem; //队列的数据元素类型
- struct LNode *next; //指向后继结点的指针
- }LNode, *LinkList;
- typedef struct queue{ //链式队列
- LinkList front; //队头指针
- LinkList rear; //队尾指针
- }QUEUE;
- /************************************************************************/
- /* 各项基本操作算法。
- */
- /************************************************************************/
- void InitQueue(QUEUE *Q);
- void EnQueue(QUEUE *Q,ElemType elem);
- void DeQueue(QUEUE *Q,ElemType *elem);
- void GetFront(QUEUE Q,ElemType *elem) ;
- bool QueueEmpty(QUEUE Q);
- /************************************************************************/
- /*初始化队列Q */
- void InitQueue(QUEUE *Q)
- {
- Q->front = (LinkList)malloc(sizeof(LNode));
- if (Q->front==NULL) exit(ERROR);
- Q->rear= Q->front;
- }
- /*入队 */
- void EnQueue(QUEUE *Q,ElemType elem)
- {
- LinkList s;
- s = (LinkList)malloc(sizeof(LNode));
- if(!s) exit(ERROR);
- s->elem = elem;
- s->next = NULL;
- Q->rear->next = s;
- Q->rear = s;
- }
- /*出队 */
- void DeQueue(QUEUE *Q,ElemType *elem)
- {
- LinkList s;
- if(QueueEmpty(*Q)) exit(ERROR);
- *elem = Q->front->next->elem;
- s = Q->front->next;
- Q->front->next = s->next;
- free(s);
- }
- /*获取队头元素内容 */
- void GetFront(QUEUE Q,ElemType *elem)
- {
- if(QueueEmpty(Q)) exit(ERROR);
- *elem = Q.front->next->elem;
- }
- /*判断队列Q是否为空 */
- bool QueueEmpty(QUEUE Q)
- {
- if(Q.front == Q.rear) return TRUE;
- return FALSE;
- }
- void main()
- {
- QUEUE Q;
- InitQueue( &Q);
- EnQueue( &Q, 1);
- EnQueue( &Q, 2);
- ElemType e;
- DeQueue( &Q,&e);
- cout<<"De queue:"<<e;
- }
【举例1】银行排队
【举例2】模拟打印机缓冲区。
在主机将数据输出到打印机时,会出现主机速度与打印机的打印速度不匹配的问题。这时主机就要停下来等待打印机。显然,这样会降低主机的使用效率。为此人们设想了一种办法:为打印机设置一个打印数据缓冲区,当主机需要打印数据时,先将数据依次写入这个缓冲区,写满后主机转去做其他的事情,而打印机就从缓冲区中按照先进先出的原则依次读取数据并打印,这样做即保证了打印数据的正确性,又提高了主机的使用效率。由此可见,打印机缓冲区实际上就是一个队列结构。
【举例3】CPU分时系统
在一个带有多个终端的计算机系统中,同时有多个用户需要使用CPU运行各自的应用程序,它们分别通过各自的终端向操作系统提出使用CPU的请求,操作系统通常按照每个请求在时间上的先后顺序,将它们排成一个队列,每次把CPU分配给当前队首的请求用户,即将该用户的应用程序投入运行,当该程序运行完毕或用完规定的时间片后,操作系统再将CPU分配给新的队首请求用户,这样即可以满足每个用户的请求,又可以使CPU正常工作。