ubuntu笔记本内置读卡器问题

本文提供了一种解决ThinkPad SL410笔记本电脑中SD卡无法正常读取的问题的方法。通过使用终端命令调整PCI设备配置及重新加载内核模块的方式,使SD卡能够被正确识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

真是费了老劲啦!!!

我的机器为thinkpad sl410

如何你怕费事,那就直接买个usb的读卡器,此文章可不看。

如果非要整,那请继续:

1.在终端输入lspci

你会看到类似以下信息:
02:00.0 System peripheral: JMicron Technology Corp. SD/MMC Host Controller
02:00.2 SD Host controller: JMicron Technology Corp. Standard SD Host Controller
02:00.3 System peripheral: JMicron Technology Corp. MS Host Controller
02:00.4 System peripheral: JMicron Technology Corp. xD Host Controller

看第一列的信息
在终端输入:sudo setpci -s 02:00.0 4c=0x22(02:00.0/2/3/4全试下,如果还不行请往下看 )

2.最后一个生效的方法,我也是靠这个活的

if you remove and reload the relevant kernel modules it will actually work!

put in the sd card then try:

$sudo modprobe -r sdhci
$sudo modprobe -r mmc_core
$sudo modprobe mmc_core
$sudo modprobe sdhci

the SD disk may automount if it doesn't try:

mount /dev/mmcblk0p1

this worked for me...


注意:如果有提示正在工作或忙的信息,请把卡插进去后,重新启动电脑,再来2中的过程;注意你的sd卡上的lock开关。

1、ABOT-M1详细参数 一、功能要求: 1、通过激光传感器和视觉传感器躲避障碍物并对所处环境建图并执行移动前给定的运动路径,通过视觉传感器完成目标识别、跟踪。 2、可以作为中国机器人及人工智能大赛-机器人任务挑战赛(自主巡航)平台。 3、通过视觉传感器完成避障、人脸识别、人体识别、轮廓识别、二维码识别、物体识别、物体跟踪等指定任务。 4、装配麦克纳姆轮可实现全向运动。 5、主控制器中内置了WIFI通信模块,可以通过 PC 或笔记本电脑等进行基于WIFI的远程控制。 6、深度融合多模态大模型(Deep Seek R1、Doubao、GLM等),可实现图像理解、视频理解、智能交互、自主编程、智能纠错、AI学习助手等功能。 二、产品参数: 1)人工智能控制器:X86架构芯片INTEL 工控机,双核四线程,数据处理主频最高不低于3.4GHz,内存不低于8GB,主频不低于2400MHz,数据存储不低于256GBSSD,300MB/s。具备蓝牙及WIFI通讯功能。本地部署funasr、whisper、chatTTS、DeepSeek-R1-Distill-Qwen-1.5B、llama3.2-3B等模型,接入Deep Seek R1、Doubao、GLM等多模态大模型。 2)从控制器:ARM Cortex™-M4内核,不低于4路高精度伺服控制,支持速度控制,电流控制,各种模式下运动控制参数可调。 3)车体结构:高强度航空铝合金车体,车身尺寸不低于35*29*42cm(长*宽*高),自重不低于7kg,整体负载不低于10kg,最大速度不低于0.5m/s。4路伺服电机配备的里程计分辨率不低于3960脉冲/圈。四轮须配备麦克纳姆轮,四轮采用麦克纳姆轮,轮子直径9.7cm。 4)传感系统:激光雷达,测量范围不小于12m;九轴姿态传感器(三轴加速度,三轴陀螺仪,三轴磁场);视觉传感器,分辨率不低于1080p、最高帧率不低于120帧;编码器,精度不低于3960脉冲/圈。 5)扩展接口:5V、12V电源输出,1路HDMI高清输出口,4路USB接口,1路type-C接口,1路音频输入/输出口,1个SD读卡器接口。 6)供电方案:车体内置12V15AH动力锂电池组,连续工作时间不低于3小时。射击模块独立供电,独立电源显示。 7)●软件功能:基于funasr、Whisper等深度学习模型的短语音识别,基于chaTTS深度学习模型的TTS语音合成,基于DeepSeek-R1-Distill-Qwen-1.5B、llama3.2-3B等单模态模型的文本生成与检索,基于多模态大模型的图像语义理解、视频理解、智能交互、智能纠错、自主编程,须具备gmapping、hector、cartographer、navigation导航功能,人脸识别、目标跟踪、行人检测、二维码扫描、特征点跟踪、视觉跟踪射击,必须具备智能语音交互,必须具备仿真竞赛验证功能(机器人任务挑战赛-自主巡航)仿真平台场地设置要与机器人任务挑战赛-自主巡航一致,调试代码可直接在机器人平台上使用)。 8)●和国际青年人工智能大赛组委会联合开发的配套课程清单(包含不限于):ros基础教程、上手指南、Gmapping建图、Hector建图、Navigation导航实验、Navigation多点导航、语音听写、语音控制运动、二维码识别实验、二维码视觉跟踪实验、封闭空间内建图导航实验,基于深度学习的ASR实验,基于深度学习的TTS实验,基于多模态大模型的智能交互实验,基于多模态大模型的图像语义理解实验,基于多模态大模型的视频理解实验,基于多模态大模型的智能纠错实验,基于机器学习的机器人唤醒实验,基于多模态大模型的自主编程实验,智能语音交互实验,仿真竞赛验证(机器人任务挑战赛-自主巡航)实验,整体课程方案包含仿真环境和实体机环境教学方案,配套课程不少于32学时(仿真环境教学方案不少于12学时),实验指导书不小于300页。 9)●须可参加“中国机器人及人工智能大赛—机器人任务挑战赛-(自主巡航)”、“国际青年人工智能大赛的定位巡航”、“全球校园人工智能算法精英大赛(机器人视觉巡航赛)”,并能够提供至少一个比赛组委会提供的比赛相关证明材料。 10)此设备开发环境为 ubuntu18.04+ROS melodic
最新发布
06-23
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值