基于数据挖掘的结构化数据库问答机器人系统

本文介绍了一个项目,通过网络爬虫获取并清洗二手房房源数据,利用NLP将用户自然语言查询转化为SQL查询结构化数据库,使用Flask搭建的问答机器人系统,避开深度学习,展示了一种基于规则的Text-to-SQL方法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

温馨提示:文末有 优快云 平台官方提供的学长 QQ 名片 :) 

1. 项目简介

        知识库,就是人们总结出的一些历史知识的集合,存储、索引以后,可以被方便的检索出来供后人查询/学习。QnA Maker是用于建立知识库的工具,使用 QnA Maker,可以根据 FAQ(常见问题解答)文档或者 URL 和产品手册等半结构化内容打造一项问题与解答服务。 可以生成一个问题与解答模型,以便灵活地应对用户查询,即用户不必输入精确的查询条件,而是提供以自然对话方式受训的机器人来响应。

        本项目通过网络爬虫采集否地区的二手房房源数据,经过数据清洗后存储到关系型数据库中,利用自然语言处理(NLP)技术,以自然对话形式,将用户查询转换为标准的 SQL 语句,并进行执行,查询关系数据库获得结果,通过对结果进行格式化处理,以文本形式返回给用户。

基于数据挖掘的结构化数据库问答机器人系统

2. 结构化数据库问答系统

        基于给定的结构化知识库和自然语言问题,给出问题对应的答案,其基本流程如下:

        其核心是 Text-to-SQL 技术:

        常见的 Text-to-SQL 算法主要基于神经网络等深度学习技术,考虑到本科来说难度较大,本项目采用基于规则的文本转SQL的方式,走通结构化知识库的问答系统的流程。

3. 基于自然语言处理的结构化数据库问答机器人系统

        系统通过Flask框架搭建后台服务,接受用户的自然语言输入,调用 Text-to-SQL 算法,转换为可执行的 SQL 语句,执行 SQL 从关系数据库中查询数据,并组装结果返回给客户端。

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码

精彩专栏推荐订阅:

1. Python 毕设精品实战案例
2. 自然语言处理 NLP 精品实战案例
3. 计算机视觉 CV 精品实战案例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python极客之家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值