Time Limit: 2000MS
Memory Limit: 65536K
Total Submissions: 32679
Accepted: 10060
Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number
line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
#include<iostream>
#include<string.h>
using namespace std;
int dp[100010];
int q[100010];
int n,k;
int a[3]={1,-1,2};
int bfs(int nn){
dp[nn]=1;
int p=0,r=0;
q[p]=nn;
while(p<=r){
int ss=q[p];
for(int i=0;i<=2;i++){
int idd;
if(i==2){
idd=ss*a[i];
}else{
idd=ss+a[i];
}
if(!dp[idd]&&idd>=1&&idd<=100000){
r++;
q[r]=idd;
dp[idd]=dp[ss]+1;
if(idd==k)
return dp[idd]-1;
}
}
p++;
}
}
int main(){
memset(dp,0,sizeof(dp));
scanf("%d%d",&n,&k);
if(n>=k){
cout<<n-k<<endl;
}else{
cout<<bfs(n)<<endl;
}
return 0;
}
追捕逃逸奶牛的算法
本博客介绍了一个寻找逃逸奶牛的算法问题,通过行走与瞬移两种方式,利用广度优先搜索(BFS)算法找到从起点到目标点的最短路径。示例展示了从起始位置5到达目标位置17所需的最少时间。
503

被折叠的 条评论
为什么被折叠?



