背包问题 II 中文 English 有 n 个物品和一个大小为 m 的背包. 给定数组 A 表示每个物品的大小和数组 V 表示每个物品的价值. 问最多能装入背包的总价值是多大? 样例 样例 1

本文探讨了背包问题的第二种变体,通过动态规划算法解决如何在给定背包容量下,从多个不可分割的物品中选择以获得最大总价值的问题。提供了具体的样例分析及O(nm)空间复杂度的解决方案。

背包问题 II

中文

English

n 个物品和一个大小为 m 的背包. 给定数组 A 表示每个物品的大小和数组 V 表示每个物品的价值.

问最多能装入背包的总价值是多大?

样例

样例 1:

输入: m = 10, A = [2, 3, 5, 7], V = [1, 5, 2, 4]
输出: 9
解释: 装入 A[1] 和 A[3] 可以得到最大价值, V[1] + V[3] = 9 

样例 2:

输入: m = 10, A = [2, 3, 8], V = [2, 5, 8]
输出: 10
解释: 装入 A[0] 和 A[2] 可以得到最大价值, V[0] + V[2] = 10

挑战

O(nm) 空间复杂度可以通过, 不过你可以尝试 O(m) 空间复杂度吗?

注意事项

  1. A[i], V[i], n, m 均为整数
  2. 你不能将物品进行切分
  3. 你所挑选的要装入背包的物品的总大小不能超过 m
  4. 每个物品只能取一次

 

class Solution {
public:
    /**
     * @param m: An integer m denotes the size of a backpack
     * @param A: Given n items with size A[i]
     * @param V: Given n items with value V[i]
     * @return: The maximum value
     */
    int backPackII(int m, vector<int> &A, vector<int> &V) {
        // write your code here
        int maxvalue[A.size()+1][m+1];
        for(int i=0;i<=A.size();i++){
            for(int j=0;j<=m;j++){
                if(i==0){
                    maxvalue[0][j]=0;
                    continue;
                }
                if(j==0){
                    maxvalue[i][0]=0;
                    continue;
                }
                if(A[i-1]<=j){
                    maxvalue[i][j]=max(maxvalue[i-1][j],maxvalue[i-1][j-A[i-1]]+V[i-1]);
                }
                else{
                    maxvalue[i][j]=maxvalue[i-1][j];
                }
            }
        }
        return maxvalue[A.size()][m];
    }
};

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三少爷的剑!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值