关于nvcc cannot find a supported cl.exe 问题

本文记录了解决在使用nvcc编译CUDA程序时遇到的“找不到cl.exe”及“找不到支持的cl.exe版本”的问题。通过调整环境变量和确保CUDA版本的一致性最终解决了该问题。
部署运行你感兴趣的模型镜像

首先声明这是个很弱的问题,不过也可以给同仁们提个醒啊。。。


我的系统配置如下:

win7 64bit VS2010 CUDA 4.0.19


之前一直使用VS2010进行编译都没有出现问题。而最近需要使用java的cuda程序包包括 JCUDA和JOGL,

在测试例子JCudaVectorAdd过程中,在命令行需要使用nvcc将.cu文件编译成.ptx 或是.cubin文件,但是总是出错。

最开始的时候提示 nvcc cannot find cl.exe,查找相关问题后,将C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\bin,就是自己VS的安装路径。

但是最后的问题就变成nvcc cannot find a supported cl.exe version.


但是个人认为在VS下可以编译,那在命令行应该也可以编译。于是纠结了好几天,怎么改都不成。后来一直在弄环境变量的问题,发现CUDA4.0\bin路径也加进去了。但是发现cuda_path的环境变量确实CUDA3.2路径。由于之前什么原因并没有取消安装CUDA3.2。

然后发现是因为CUDA3.2的路径优先于CUDA4.0,于是将此路径进行修改,删除掉了CUDA3.2路径。问题就解决了。

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

(rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置下载URL和目标路径 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $downloadUrl = "https://www.7-zip.org/a/7z2406-x64.msi" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $installerPath = "$env:TEMP\7z-installer.msi" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $installDir = "E:\Program Files\7-Zip" (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 下载安装程序 (rtx5070_env) PS E:\PyTorch_Build\pytorch> Invoke-WebRequest -Uri $downloadUrl -OutFile $installerPath (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 创建目标目录 (rtx5070_env) PS E:\PyTorch_Build\pytorch> New-Item -ItemType Directory -Path $installDir -Force Directory: E:\Program Files Mode LastWriteTime Length Name ---- ------------- ------ ---- d---- 2025/9/3 19:41 7-Zip (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 使用msiexec手动安装 (rtx5070_env) PS E:\PyTorch_Build\pytorch> Start-Process -FilePath "msiexec.exe" -ArgumentList "/i `"$installerPath`" INSTALLDIR=`"$installDir`" /quiet" -Wait (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 验证安装 (rtx5070_env) PS E:\PyTorch_Build\pytorch> if (Test-Path "$installDir\7z.exe") { >> Write-Host "7-Zip 已成功安装到 $installDir" -ForegroundColor Green >> >> # 添加到系统PATH >> $env:Path += ";$installDir" >> [Environment]::SetEnvironmentVariable("Path", $env:Path, "Machine") >> } else { >> # 手动解压作为备用方案 >> $zipUrl = "https://www.7-zip.org/a/7z2406-x64.zip" >> $zipPath = "$env:TEMP\7z-x64.zip" >> Invoke-WebRequest -Uri $zipUrl -OutFile $zipPath >> >> # 使用.NET解压 >> Add-Type -AssemblyName System.IO.Compression.FileSystem >> [System.IO.Compression.ZipFile]::ExtractToDirectory($zipPath, $installDir) >> } 7-Zip 已成功安装到 E:\Program Files\7-Zip (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 清理安装包 (rtx5070_env) PS E:\PyTorch_Build\pytorch> Remove-Item $installerPath -ErrorAction SilentlyContinue (rtx5070_env) PS E:\PyTorch_Build\pytorch> Remove-Item $zipPath -ErrorAction SilentlyContinue InvalidOperation: The variable '$zipPath' cannot be retrieved because it has not been set. (rtx5070_env) PS E:\PyTorch_Build\pytorch> .\manual_install_7zip.ps1 .\manual_install_7zip.ps1: The term '.\manual_install_7zip.ps1' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (rtx5070_env) PS E:\PyTorch_Build\pytorch> .\fixed_setup_env.ps1 环境变量配置完成: CUDA_PATH = E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0 CUDNN_INCLUDE_DIR = E:\Program Files\NVIDIA\CUNND\v9.12\include\13.0 CUDNN_LIBRARY = E:\Program Files\NVIDIA\CUNND\v9.12\lib\13.0\x64\cudnn64_9.lib (rtx5070_env) PS E:\PyTorch_Build\pytorch> .\verify_cudnn.ps1 E:\Program Files\NVIDIA\CUNND\v9.12\include\13.0\cudnn.h : 存在 E:\Program Files\NVIDIA\CUNND\v9.12\lib\13.0\x64\cudnn64_9.lib : 存在 E:\Program Files\NVIDIA\CUNND\v9.12\lib\13.0\x64\cudnn64_9.dll : 缺失 测试CUDA和cuDNN集成: nvcc fatal : nvcc cannot find a supported version of Microsoft Visual Studio. Only the versions between 2019 and 2022 (inclusive) are supported! The nvcc flag '-allow-unsupported-compiler' can be used to override this version check; however, using an unsupported host compiler may cause compilation failure or incorrect run time execution. Use at your own risk. .\test_cudnn.exe: E:\PyTorch_Build\pytorch\verify_cudnn.ps1:40 Line | 40 | .\test_cudnn.exe | ~~~~~~~~~~~~~~~~ | The term '.\test_cudnn.exe' is not recognized as a name of a cmdlet, function, script file, or executable | program. Check the spelling of the name, or if a path was included, verify that the path is correct and try | again. (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install numpy ninja pybind11 typing_extensions pyyaml future Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: numpy in e:\python310\lib\site-packages (1.26.3) Requirement already satisfied: ninja in e:\python310\lib\site-packages (1.13.0) Collecting pybind11 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/cd/8a/37362fc2b949d5f733a8b0f2ff51ba423914cabefe69f1d1b6aab710f5fe/pybind11-3.0.1-py3-none-any.whl (293 kB) Requirement already satisfied: typing_extensions in e:\python310\lib\site-packages (4.14.1) Requirement already satisfied: pyyaml in e:\python310\lib\site-packages (6.0.2) Collecting future Using cached https://pypi.tuna.tsinghua.edu.cn/packages/da/71/ae30dadffc90b9006d77af76b393cb9dfbfc9629f339fc1574a1c52e6806/future-1.0.0-py3-none-any.whl (491 kB) WARNING: Error parsing dependencies of torch: [Errno 2] No such file or directory: 'e:\\python310\\lib\\site-packages\\torch-2.6.0.dev20241112+cu121.dist-info\\METADATA' Installing collected packages: pybind11, future Successfully installed future-1.0.0 pybind11-3.0.1 (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 验证cuDNN文件 (rtx5070_env) PS E:\PyTorch_Build\pytorch> Test-Path "E:\Program Files\NVIDIA\cuDNN\v9.12\include\cudnn.h" False (rtx5070_env) PS E:\PyTorch_Build\pytorch> Test-Path "E:\Program Files\NVIDIA\cuDNN\v9.12\bin\cudnn64_9.dll" False (rtx5070_env) PS E:\PyTorch_Build\pytorch> Test-Path "E:\Program Files\NVIDIA\cuDNN\v9.12\lib\cudnn64_9.lib" False (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 验证7-Zip (rtx5070_env) PS E:\PyTorch_Build\pytorch> Test-Path "E:\Program Files\7-Zip\7z.exe" True (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 验证Visual Studio编译器 (rtx5070_env) PS E:\PyTorch_Build\pytorch> Get-Command cl.exe -ErrorAction SilentlyContinue CommandType Name Version Source ----------- ---- ------- ------ Application cl.exe 14.16.270… C:\Program Files\Microsoft Visual Studio… (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装7-Zip (rtx5070_env) PS E:\PyTorch_Build\pytorch> .\install_7zip.ps1 .\install_7zip.ps1: The term '.\install_7zip.ps1' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 修复cuDNN (rtx5070_env) PS E:\PyTorch_Build\pytorch> .\fix_cudnn.ps1 .\fix_cudnn.ps1: The term '.\fix_cudnn.ps1' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 修复VS路径 (rtx5070_env) PS E:\PyTorch_Build\pytorch> .\find_cl.exe.ps1 .\find_cl.exe.ps1: The term '.\find_cl.exe.ps1' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 更新环境变量 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:Path = @( >> "E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\bin", >> "E:\Program Files\NVIDIA\cuDNN\v9.12\bin", >> "E:\Program Files\NVIDIA\cuDNN\v9.12\lib", >> "E:\Program Files\CMake\bin", >> "C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\bin\Hostx64\x64", >> "E:\Python310\Scripts", >> $env:Path >> ) -join ';' (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置cuDNN路径变量 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:CUDNN_INCLUDE_DIR = "E:\Program Files\NVIDIA\cuDNN\v9.12\include" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:CUDNN_LIBRARY = "E:\Program Files\NVIDIA\cuDNN\v9.12\lib\cudnn64_9.lib" (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 验证最终配置 (rtx5070_env) PS E:\PyTorch_Build\pytorch> .\verify_paths_fixed.ps1 .\verify_paths_fixed.ps1: The term '.\verify_paths_fixed.ps1' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (rtx5070_env) PS E:\PyTorch_Build\pytorch>
09-04
PowerShell 7 环境已加载 (版本: 7.5.2) PS C:\Users\Administrator\Desktop> cd E:\PyTorch_Build\pytorch PS E:\PyTorch_Build\pytorch> python -m venv rtx5070_env PS E:\PyTorch_Build\pytorch> .\rtx5070_env\Scripts\activate (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 创建终极修复脚本: build_absolute_fix.ps1 (rtx5070_env) PS E:\PyTorch_Build\pytorch> @' >> # ------ 初始化 ------ >> $ErrorActionPreference = "Stop" >> Write-Host "=== PyTorch 终极解决方案 ===" -ForegroundColor Cyan >> Write-Host "开始时间: $(Get-Date -Format 'yyyy-MM-dd HH:mm:ss')" >> $logFile = "$PWD\build_log_$(Get-Date -Format 'yyyyMMdd_HHmmss').txt" >> Start-Transcript -Path $logFile -Append >> >> # ------ 强制设置开发环境 ------ >> $env:DeveloperMode = 1 >> $env:CMAKE_GENERATOR = "Ninja" >> >> # ------ 路径配置 ------ >> $pythonEnv = "E:\PyTorch_Build\pytorch\rtx5070_env" >> $cudaPath = "E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0" >> $cudnnBasePath = "E:\Program Files\NVIDIA\CUNND\v9.12" >> $cudaVersion = "13.0" >> $vsPath = "C:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools" # 确保正确路径 >> >> # ------ 确保Visual Studio工具在PATH中 ------ >> $env:Path = ` >> "$vsPath\VC\Tools\MSVC\14.44.35207\bin\Hostx64\x64;" + ` >> "$vsPath\Common7\IDE;" + ` >> "$cudaPath\bin;" + ` >> $env:Path >> >> # ------ 修复cuDNN检测 ------ >> function Get-ProperCudnnPath { >> $headerPath = "E:\Program Files\NVIDIA\CUNND\v9.12\include\13.0" >> $libraryPath = "E:\Program Files\NVIDIA\CUNND\v9.12\lib\13.0\x64\cudnn64_9.lib" >> $dllPath = "E:\Program Files\NVIDIA\CUNND\v9.12\bin\13.0\cudnn64_9.dll" >> >> if (-not (Test-Path $headerPath)) { >> throw "cuDNN头文件路径不存在: $headerPath" >> } >> if (-not (Test-Path $libraryPath)) { >> throw "cuDNN库文件路径不存在: $libraryPath" >> } >> if (-not (Test-Path $dllPath)) { >> throw "cuDNN DLL文件路径不存在: $dllPath" >> } >> >> return @{ >> IncludeDir = $headerPath >> Library = $libraryPath >> BinDir = [System.IO.Path]::GetDirectoryName($dllPath) >> } >> } >> >> Write-Host "`n=== 硬编码cuDNN路径 ===" -ForegroundColor Yellow >> $cudnn = Get-ProperCudnnPath >> Write-Host "cuDNN头文件: $($cudnn.IncludeDir)" >> Write-Host "cuDNN库文件: $($cudnn.Library)" >> Write-Host "cuDNN DLL目录: $($cudnn.BinDir)" >> >> # ------ 环境配置 ------ >> Write-Host "`n=== 配置环境变量 ===" -ForegroundColor Green >> $env:CUDA_PATH = $cudaPath >> $env:Path = "$cudaPath\bin;$($cudnn.BinDir);$env:Path" >> $env:CUDNN_INCLUDE_DIR = $cudnn.IncludeDir >> $env:CUDNN_LIBRARY = $cudnn.Library >> $env:TORCH_CUDA_ARCH_LIST = "8.9" >> >> # 调试信息 >> Write-Host "环境变量检查:" >> Write-Host "CUDA_PATH: $env:CUDA_PATH" >> Write-Host "CUDNN_INCLUDE_DIR: $env:CUDNN_INCLUDE_DIR" >> Write-Host "CUDNN_LIBRARY: $env:CUDNN_LIBRARY" >> Write-Host "PATH: $($env:Path -split ';' | Select-Object -First 10)..." >> >> # ------ 激活Python环境 ------ >> Write-Host "`n=== 激活Python环境 ===" -ForegroundColor Magenta >> . "$pythonEnv\Scripts\Activate.ps1" >> Write-Host "✅ Python虚拟环境已激活" -ForegroundColor Green >> Write-Host "Python版本: $(python --version)" >> Write-Host "Pip版本: $(pip --version)" >> >> # ------ 强制清理 ------ >> Write-Host "`n=== 深度清理构建缓存 ===" -ForegroundColor Red >> python setup.py clean >> Remove-Item -Recurse -Force build, dist, torch\lib, cmake_build -ErrorAction SilentlyContinue >> Remove-Item -Force *.ncb, *.sdf, *.suo -ErrorAction SilentlyContinue >> >> # ------ 安装依赖 ------ >> Write-Host "`n=== 安装核心依赖 ===" -ForegroundColor Yellow >> pip install -U pip setuptools wheel ninja cmake==3.28.7 # 使用稳定版本 >> pip install -r requirements.txt >> >> # ------ 方法4: 直接CMake+Ninja构建 ------ >> Write-Host "`n=== 方法4: 纯CMake+Ninja构建 ===" -ForegroundColor Green >> $buildDir = "$PWD\cmake_release" >> New-Item -ItemType Directory -Path $buildDir -Force | Out-Null >> Set-Location $buildDir >> >> cmake .. -GNinja ` >> -DCMAKE_BUILD_TYPE=Release ` >> -DUSE_CUDA=ON ` >> -DUSE_CUDNN=ON ` >> -DCUDNN_INCLUDE_DIR="$($cudnn.IncludeDir)" ` >> -DCUDNN_LIBRARY="$($cudnn.Library)" ` >> -DPYTHON_EXECUTABLE="$pythonEnv\Scripts\python.exe" ` >> -DCMAKE_INSTALL_PREFIX="$PWD/install" ` >> -DTORCH_CUDA_ARCH_LIST="8.9" ` >> -DCMAKE_MSVC_RESPONSE_FILE=OFF # 解决Windows路径问题 >> >> if ($LASTEXITCODE -ne 0) { >> Write-Host "❌ CMake配置失败" -ForegroundColor Red >> exit 1 >> } >> >> ninja install >> $buildExitCode = $LASTEXITCODE >> Set-Location .. >> >> if ($buildExitCode -eq 0) { >> # ------ 修复运行时依赖 ------ >> $torchLibDir = "$PWD\torch\lib" >> New-Item -ItemType Directory -Path $torchLibDir -Force | Out-Null >> >> # 1. 复制所有CUDA DLL >> Get-ChildItem -Path "$cudaPath\bin\*.dll" | ForEach-Object { >> Copy-Item $_.FullName $torchLibDir -Force >> Write-Host "✅ 复制CUDA DLL: $($_.Name)" >> } >> >> # 2. 复制cuDNN DLL >> Copy-Item "$($cudnn.BinDir)\*.dll" $torchLibDir -Force >> >> # 3. 复制构建生成的DLL >> $buildDlls = Get-ChildItem -Path "$buildDir\lib", "$buildDir\bin" -Recurse -Include *.dll >> foreach ($dll in $buildDlls) { >> Copy-Item $dll.FullName $torchLibDir -Force >> Write-Host "✅ 复制构建DLL: $($dll.Name)" >> } >> >> # 4. 设置Python软链接 >> $installDir = "$buildDir\install" >> $env:PYTHONPATH = "$installDir;$env:PYTHONPATH" >> } >> >> # ------ 验证结果 ------ >> if ($buildExitCode -eq 0) { >> Write-Host "`n=== 验证构建结果 ===" -ForegroundColor Cyan >> $env:Path = "$torchLibDir;$env:Path" >> >> python -c @" >> import os, torch >> print(f'PyTorch版本: {torch.__version__}') >> print(f'CUDA可用: {torch.cuda.is_available()}') >> >> if torch.cuda.is_available(): >> print(f'CUDA版本: {torch.version.cuda}') >> print(f'cuDNN版本: {torch.backends.cudnn.version()}') >> print(f'检测到的GPU: {torch.cuda.get_device_name(0)}') >> >> # 测试基础计算 >> a = torch.randn(1000, 1000, device='cuda') >> b = torch.randn(1000, 1000, device='cuda') >> c = a @ b >> print(f'GPU计算验证: 矩阵乘法成功 (结果形状: {c.shape})') >> >> # 检查关键DLL >> from ctypes import WinDLL >> try: >> WinDLL(os.path.join(torch.__file__, 'lib', 'aoti_custom_ops.dll')) >> print('✅ aoti_custom_ops.dll 加载成功') >> except Exception as e: >> print(f'❌ aoti_custom_ops.dll 加载失败: {str(e)}') >> "@ >> $buildExitCode = $LASTEXITCODE >> } >> >> # ------ 完成报告 ------ >> Write-Host "`n=== 构建报告 ===" -ForegroundColor Cyan >> Write-Host "构建状态: $(if ($buildExitCode -eq 0) {'成功!'} else {'失败'})" -ForegroundColor $(if ($buildExitCode -eq 0) {'Green'} else {'Red'}) >> Write-Host "完成时间: $(Get-Date -Format 'yyyy-MM-dd HH:mm:ss')" >> >> Stop-Transcript >> exit $buildExitCode >> '@ | Set-Content -Path "build_absolute_fix.ps1" -Encoding UTF8 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 运行脚本 (rtx5070_env) PS E:\PyTorch_Build\pytorch> Set-ExecutionPolicy Bypass -Scope Process -Force (rtx5070_env) PS E:\PyTorch_Build\pytorch> .\build_absolute_fix.ps1 === PyTorch 终极解决方案 === 开始时间: 2025-09-03 14:24:16 Transcript started, output file is E:\PyTorch_Build\pytorch\build_log_20250903_142416.txt === 硬编码cuDNN路径 === cuDNN头文件: E:\Program Files\NVIDIA\CUNND\v9.12\include\13.0 cuDNN库文件: E:\Program Files\NVIDIA\CUNND\v9.12\lib\13.0\x64\cudnn64_9.lib cuDNN DLL目录: E:\Program Files\NVIDIA\CUNND\v9.12\bin\13.0 === 配置环境变量 === 环境变量检查: CUDA_PATH: E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0 CUDNN_INCLUDE_DIR: E:\Program Files\NVIDIA\CUNND\v9.12\include\13.0 CUDNN_LIBRARY: E:\Program Files\NVIDIA\CUNND\v9.12\lib\13.0\x64\cudnn64_9.lib PATH: E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\bin E:\Program Files\NVIDIA\CUNND\v9.12\bin\13.0 C:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\VC\Tools\MSVC\14.44.35207\bin\Hostx64\x64 C:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\Common7\IDE E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\bin E:\PyTorch_Build\pytorch\rtx5070_env\Scripts C:\Program Files\PowerShell\7 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\bin C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\libnvvp C:\Miniconda3\condabin... === 激活Python环境 === ✅ Python虚拟环境已激活 Python版本: Python 3.10.10 Pip版本: pip 25.2 from E:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\pip (python 3.10) === 深度清理构建缓存 === Building wheel torch-2.9.0a0+git2d31c3d E:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\setuptools\config\_apply_pyprojecttoml.py:82: SetuptoolsDeprecationWarning: `project.license` as a TOML table is deprecated !! ******************************************************************************** Please use a simple string containing a SPDX expression for `project.license`. You can also use `project.license-files`. (Both options available on setuptools>=77.0.0). By 2026-Feb-18, you need to update your project and remove deprecated calls or your builds will no longer be supported. See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! corresp(dist, value, root_dir) running clean === 安装核心依赖 === Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: pip in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (25.2) Requirement already satisfied: setuptools in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (79.0.1) Collecting setuptools Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl (1.2 MB) Requirement already satisfied: wheel in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (0.45.1) Requirement already satisfied: ninja in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (1.13.0) ERROR: Ignored the following yanked versions: 3.27.4, 3.28.0, 3.29.0, 3.29.1, 3.31.0 ERROR: Could not find a version that satisfies the requirement cmake==3.28.7 (from versions: 0.1.0, 0.2.0, 0.4.0, 0.5.0, 0.6.0, 0.7.0, 0.7.1, 0.8.0, 0.9.0, 3.6.3, 3.6.3.post1, 3.7.2, 3.8.2, 3.9.6, 3.10.3, 3.11.0, 3.11.4, 3.11.4.post1, 3.12.0, 3.13.0, 3.13.1, 3.13.2, 3.13.2.post1, 3.14.3, 3.14.3.post1, 3.14.4, 3.14.4.post1, 3.15.3, 3.15.3.post1, 3.16.3, 3.16.3.post1, 3.16.5, 3.16.6, 3.16.7, 3.16.8, 3.17.0, 3.17.1, 3.17.2, 3.17.3, 3.18.0, 3.18.2, 3.18.2.post1, 3.18.4, 3.18.4.post1, 3.20.2, 3.20.3, 3.20.4, 3.20.5, 3.21.0, 3.21.1, 3.21.1.post1, 3.21.2, 3.21.3, 3.21.4, 3.22.0, 3.22.1, 3.22.2, 3.22.3, 3.22.4, 3.22.5, 3.22.6, 3.23.3, 3.24.0, 3.24.1, 3.24.1.1, 3.24.2, 3.24.3, 3.25.0, 3.25.2, 3.26.0, 3.26.1, 3.26.3, 3.26.4, 3.27.0, 3.27.1, 3.27.2, 3.27.4.1, 3.27.5, 3.27.6, 3.27.7, 3.27.9, 3.28.1, 3.28.3, 3.28.4, 3.29.0.1, 3.29.2, 3.29.3, 3.29.5, 3.29.5.1, 3.29.6, 3.30.0, 3.30.1, 3.30.2, 3.30.3, 3.30.4, 3.30.5, 3.30.9, 3.31.0.1, 3.31.1, 3.31.2, 3.31.4, 3.31.6, 4.0.0, 4.0.2, 4.0.3, 4.1.0) ERROR: No matching distribution found for cmake==3.28.7 Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: setuptools<80.0,>=70.1.0 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r E:\PyTorch_Build\pytorch\requirements-build.txt (line 2)) (79.0.1) Requirement already satisfied: cmake>=3.27 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r E:\PyTorch_Build\pytorch\requirements-build.txt (line 3)) (4.1.0) Requirement already satisfied: ninja in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r E:\PyTorch_Build\pytorch\requirements-build.txt (line 4)) (1.13.0) Requirement already satisfied: numpy in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r E:\PyTorch_Build\pytorch\requirements-build.txt (line 5)) (2.2.6) Requirement already satisfied: packaging in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r E:\PyTorch_Build\pytorch\requirements-build.txt (line 6)) (25.0) Requirement already satisfied: pyyaml in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r E:\PyTorch_Build\pytorch\requirements-build.txt (line 7)) (6.0.2) Requirement already satisfied: requests in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r E:\PyTorch_Build\pytorch\requirements-build.txt (line 8)) (2.32.5) Requirement already satisfied: six in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r E:\PyTorch_Build\pytorch\requirements-build.txt (line 9)) (1.17.0) Requirement already satisfied: typing-extensions>=4.10.0 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r E:\PyTorch_Build\pytorch\requirements-build.txt (line 10)) (4.15.0) Requirement already satisfied: expecttest>=0.3.0 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r requirements.txt (line 8)) (0.3.0) Requirement already satisfied: filelock in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r requirements.txt (line 9)) (3.19.1) Requirement already satisfied: fsspec>=0.8.5 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r requirements.txt (line 10)) (2025.7.0) Requirement already satisfied: hypothesis in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r requirements.txt (line 11)) (6.138.13) Requirement already satisfied: jinja2 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r requirements.txt (line 12)) (3.1.6) Requirement already satisfied: lintrunner in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r requirements.txt (line 13)) (0.12.7) Requirement already satisfied: networkx>=2.5.1 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r requirements.txt (line 14)) (3.4.2) Requirement already satisfied: optree>=0.13.0 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r requirements.txt (line 15)) (0.17.0) Requirement already satisfied: psutil in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r requirements.txt (line 16)) (7.0.0) Requirement already satisfied: sympy>=1.13.3 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r requirements.txt (line 17)) (1.14.0) Requirement already satisfied: wheel in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r requirements.txt (line 19)) (0.45.1) Requirement already satisfied: build[uv] in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from -r requirements.txt (line 7)) (1.3.0) Requirement already satisfied: charset_normalizer<4,>=2 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from requests->-r E:\PyTorch_Build\pytorch\requirements-build.txt (line 8)) (3.4.3) Requirement already satisfied: idna<4,>=2.5 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from requests->-r E:\PyTorch_Build\pytorch\requirements-build.txt (line 8)) (3.10) Requirement already satisfied: urllib3<3,>=1.21.1 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from requests->-r E:\PyTorch_Build\pytorch\requirements-build.txt (line 8)) (2.5.0) Requirement already satisfied: certifi>=2017.4.17 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from requests->-r E:\PyTorch_Build\pytorch\requirements-build.txt (line 8)) (2025.8.3) Requirement already satisfied: pyproject_hooks in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from build[uv]->-r requirements.txt (line 7)) (1.2.0) Requirement already satisfied: colorama in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from build[uv]->-r requirements.txt (line 7)) (0.4.6) Requirement already satisfied: tomli>=1.1.0 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from build[uv]->-r requirements.txt (line 7)) (2.2.1) Requirement already satisfied: uv>=0.1.18 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from build[uv]->-r requirements.txt (line 7)) (0.8.14) Requirement already satisfied: attrs>=22.2.0 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from hypothesis->-r requirements.txt (line 11)) (25.3.0) Requirement already satisfied: exceptiongroup>=1.0.0 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from hypothesis->-r requirements.txt (line 11)) (1.3.0) Requirement already satisfied: sortedcontainers<3.0.0,>=2.1.0 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from hypothesis->-r requirements.txt (line 11)) (2.4.0) Requirement already satisfied: MarkupSafe>=2.0 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from jinja2->-r requirements.txt (line 12)) (3.0.2) Requirement already satisfied: mpmath<1.4,>=1.1.0 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from sympy>=1.13.3->-r requirements.txt (line 17)) (1.3.0) === 方法4: 纯CMake+Ninja构建 === CMake Deprecation Warning at CMakeLists.txt:9 (cmake_policy): The OLD behavior for policy CMP0126 will be removed from a future version of CMake. The cmake-policies(7) manual explains that the OLD behaviors of all policies are deprecated and that a policy should be set to OLD only under specific short-term circumstances. Projects should be ported to the NEW behavior and not rely on setting a policy to OLD. -- The CXX compiler identification is GNU 13.2.0 -- The C compiler identification is GNU 13.2.0 -- Detecting CXX compiler ABI info -- Detecting CXX compiler ABI info - done -- Check for working CXX compiler: C:/ProgramData/mingw64/mingw64/bin/c++.exe - skipped -- Detecting CXX compile features -- Detecting CXX compile features - done -- Detecting C compiler ABI info -- Detecting C compiler ABI info - done -- Check for working C compiler: C:/ProgramData/mingw64/mingw64/bin/gcc.exe - skipped -- Detecting C compile features -- Detecting C compile features - done -- Not forcing any particular BLAS to be found CMake Warning at CMakeLists.txt:421 (message): TensorPipe cannot be used on Windows. Set it to OFF CMake Warning at CMakeLists.txt:423 (message): KleidiAI cannot be used on Windows. Set it to OFF CMake Warning at CMakeLists.txt:435 (message): Libuv is not installed in current conda env. Set USE_DISTRIBUTED to OFF. Please run command 'conda install -c conda-forge libuv=1.39' to install libuv. -- Performing Test C_HAS_AVX_1 -- Performing Test C_HAS_AVX_1 - Failed -- Performing Test C_HAS_AVX_2 -- Performing Test C_HAS_AVX_2 - Success -- Performing Test C_HAS_AVX2_1 -- Performing Test C_HAS_AVX2_1 - Failed -- Performing Test C_HAS_AVX2_2 -- Performing Test C_HAS_AVX2_2 - Success -- Performing Test C_HAS_AVX512_1 -- Performing Test C_HAS_AVX512_1 - Failed -- Performing Test C_HAS_AVX512_2 -- Performing Test C_HAS_AVX512_2 - Success -- Performing Test CXX_HAS_AVX_1 -- Performing Test CXX_HAS_AVX_1 - Failed -- Performing Test CXX_HAS_AVX_2 -- Performing Test CXX_HAS_AVX_2 - Success -- Performing Test CXX_HAS_AVX2_1 -- Performing Test CXX_HAS_AVX2_1 - Failed -- Performing Test CXX_HAS_AVX2_2 -- Performing Test CXX_HAS_AVX2_2 - Success -- Performing Test CXX_HAS_AVX512_1 -- Performing Test CXX_HAS_AVX512_1 - Failed -- Performing Test CXX_HAS_AVX512_2 -- Performing Test CXX_HAS_AVX512_2 - Success -- Current compiler supports avx2 extension. Will build perfkernels. -- Performing Test COMPILER_SUPPORTS_HIDDEN_VISIBILITY -- Performing Test COMPILER_SUPPORTS_HIDDEN_VISIBILITY - Success -- Performing Test COMPILER_SUPPORTS_HIDDEN_INLINE_VISIBILITY -- Performing Test COMPILER_SUPPORTS_HIDDEN_INLINE_VISIBILITY - Success -- Performing Test COMPILER_SUPPORTS_RDYNAMIC -- Performing Test COMPILER_SUPPORTS_RDYNAMIC - Failed -- Could not find hardware support for NEON on this machine. -- No OMAP3 processor on this machine. -- No OMAP4 processor on this machine. -- Compiler does not support SVE extension. Will not build perfkernels. CMake Warning at CMakeLists.txt:841 (message): x64 operating system is required for FBGEMM. Not compiling with FBGEMM. Turn this warning off by USE_FBGEMM=OFF. -- Found CUDA: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 (found version "13.0") CMake Error at rtx5070_env/Lib/site-packages/cmake/data/share/cmake-4.1/Modules/CMakeDetermineCompilerId.cmake:928 (message): Compiling the CUDA compiler identification source file "CMakeCUDACompilerId.cu" failed. Compiler: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe Build flags: Id flags: --keep;--keep-dir;tmp -v The output was: 1 nvcc fatal : Cannot find compiler 'cl.exe' in PATH Compiling the CUDA compiler identification source file "CMakeCUDACompilerId.cu" failed. Compiler: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe Build flags: -DLIBCUDACXX_ENABLE_SIMPLIFIED_COMPLEX_OPERATIONS;-Xfatbin;-compress-all Id flags: --keep;--keep-dir;tmp -v The output was: 1 nvcc fatal : Cannot find compiler 'cl.exe' in PATH Call Stack (most recent call first): rtx5070_env/Lib/site-packages/cmake/data/share/cmake-4.1/Modules/CMakeDetermineCompilerId.cmake:8 (CMAKE_DETERMINE_COMPILER_ID_BUILD) rtx5070_env/Lib/site-packages/cmake/data/share/cmake-4.1/Modules/CMakeDetermineCompilerId.cmake:53 (__determine_compiler_id_test) rtx5070_env/Lib/site-packages/cmake/data/share/cmake-4.1/Modules/CMakeDetermineCUDACompiler.cmake:162 (CMAKE_DETERMINE_COMPILER_ID) cmake/public/cuda.cmake:47 (enable_language) cmake/Dependencies.cmake:44 (include) CMakeLists.txt:869 (include) -- Configuring incomplete, errors occurred! ❌ CMake配置失败 为啥一直失败呢 我们现在缺的是什么 你能解释给我听吗
09-04
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值