URAL 1551 Sumo Tournament

1551. Sumo Tournament

Time limit: 1.0 second
Memory limit: 64 MB
A sumo tournament is held in Tokyo, in which 2 N sportsmen take part. In each encounter there is a winner, and the loser drops out of the tournament. Thus, in order to determine the winner of the tournament, it is necessary to conduct  N rounds.
The organizers wish that in as many rounds as possible all encounters would be held between sumoists from different prefectures of Japan. For that they can forge the drawing results arbitrarily.

Input

The first line contains the number  N (1 ≤  N ≤ 10). Each of the next 2 N lines contains the name of a sumouist and the prefecture which he presents. The name and prefecture are sequences of Latin letters of length not exceeding 30.

Output

Output the maximal number of rounds in which sumoists from the same prefecture will not fight each other regardless of the outcomes of encounters (that is, find the maximal possible  K such that in at least K rounds all encounters will be between sumoists from different prefectures). The organizers can control the initial arrangement of sportsmen but can't control results of encounters.

Sample

input output
3
Homasho Ishikawa
Tamakasuga Tokyo
Futeno Tochigi
Takekaze Tokyo
Kasugao Yamaguchi
Kotoshogiku Ishikawa
Kotomitsuki Tokyo
Miyabiyama Shizuoka
1
Problem Author: Sergey Pupyrev
Problem Source: The 11th Urals Collegiate Programing Championship, Ekaterinburg, April 21, 2007
Tags: none   (
hide tags for unsolved problems
)

就是一个淘汰赛问题,问在保证来自于同一城市的队伍不遭遇的情况下最多能进行几轮比赛。

今天学了map容器,发现简直神奇,真高兴!!

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <map>

using namespace std;

#define FOR(i,s,t) for(int i=s;i<=t;++i)
#define max(x,y) ((x)>(y)?(x):(y))

map<string,int> cnt;
int n,maxv;

int main()
{
	maxv=0;
	cin >> n;
	FOR(i,1,(1<<n))
	{
		string s1,s2;
		cin >> s1 >> s2;
		++cnt[s2];
		maxv=max(cnt[s2],maxv);
	}
	for (int i=0;i<=30;++i)
		if ((1<<i)>=maxv) {cout << n-i << endl;break;}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值