(PAT 1088) Rational Arithmetic (分数运算模拟)

本文详细介绍了如何使用C++实现两个有理数的加、减、乘、除运算,通过定义结构体来存储分数,并实现了化简、加法、减法、乘法和除法等关键函数。文章提供了完整的代码示例,展示了如何输入两个分数,然后计算并输出它们的和、差、积和商。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

For two rational numbers, your task is to implement the basic arithmetics, that is, to calculate their sum, difference, product and quotient.

Input Specification:

Each input file contains one test case, which gives in one line the two rational numbers in the format a1/b1 a2/b2. The numerators and the denominators are all in the range of long int. If there is a negative sign, it must appear only in front of the numerator. The denominators are guaranteed to be non-zero numbers.

Output Specification:

For each test case, print in 4 lines the sum, difference, product and quotient of the two rational numbers, respectively. The format of each line is number1 operator number2 = result. Notice that all the rational numbers must be in their simplest form k a/b, where k is the integer part, and a/b is the simplest fraction part. If the number is negative, it must be included in a pair of parentheses. If the denominator in the division is zero, output Inf as the result. It is guaranteed that all the output integers are in the range of long int.

Sample Input 1:

2/3 -4/2

Sample Output 1:

2/3 + (-2) = (-1 1/3)
2/3 - (-2) = 2 2/3
2/3 * (-2) = (-1 1/3)
2/3 / (-2) = (-1/3)

Sample Input 2:

5/3 0/6

Sample Output 2:

1 2/3 + 0 = 1 2/3
1 2/3 - 0 = 1 2/3
1 2/3 * 0 = 0
1 2/3 / 0 = Inf

解题思路:

模拟分数的运算,比较繁琐的模拟题,代码量较大

我在一个地方卡了比较久,分子分母相同的情况,不能直接输出1,因为可能存在为-1的情况,要输出计算结果

#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <algorithm>
#include <math.h>
#include <string>
using namespace std;
struct refs {
	long long up, down;
};

long long gcd(long long a, long long b) {
	if (b == 0) return a;
	else return gcd(b, a%b);
}

refs simplify(refs obj) {
	if (obj.up == 0) {
		obj.up = 0, obj.down = 1;
		return obj;
	}
	if (obj.down < 0) { //交换负数
		obj.up = -obj.up;
		obj.down = -obj.down;
	}
	long long gcdNum = gcd(abs(obj.up), abs(obj.down));
	obj.up /= gcdNum;
	obj.down /= gcdNum;
	return obj;
}

refs sadd(refs obj1,refs obj2) {
	refs obj;
	obj.down = obj1.down*obj2.down;
	obj.up = obj1.up*obj2.down + obj2.up*obj1.down;
	return simplify(obj);
}

refs ssub(refs obj1, refs obj2) {
	refs obj;
	obj.down = obj1.down*obj2.down;
	obj.up = obj1.up*obj2.down - obj2.up*obj1.down;
	return simplify(obj);
}

refs smulty(refs obj1, refs obj2) {
	refs obj;
	obj.down = obj1.down*obj2.down;
	obj.up = obj1.up * obj2.up;
	return simplify(obj);
}

refs sdiv(refs obj1, refs obj2) {
	refs obj;
	obj.up = obj1.up * obj2.down;
	obj.down = obj1.down*obj2.up;
	return simplify(obj);
}

void showRes(refs sobj) {
	if (sobj.up == 0) {
		printf("0");
	}
	else if (sobj.down == 0) {
		printf("Inf");
	}
	else {
		if (sobj.up < 0) printf("(");
		if (abs(sobj.up) > abs(sobj.down)) {
			if (abs(sobj.up) % abs(sobj.down) == 0) {
				printf("%lld", sobj.up / sobj.down);
			}
			else {
				printf("%lld %lld/%lld", sobj.up / sobj.down, abs(sobj.up % sobj.down), abs(sobj.down));
			}
		}
		else if(abs(sobj.up) == abs(sobj.down)){
			printf("%lld", sobj.up/sobj.down);
		}
		else {
			printf("%lld/%lld", sobj.up, sobj.down);
		}
		if (sobj.up < 0) printf(")");
	}
}

int main() {
	refs input1, input2;
	scanf("%lld/%lld %lld/%lld", &input1.up, &input1.down, &input2.up, &input2.down);
	refs obbj[4];
	char tools[4] = { '+','-','*','/' };
	int index = 0;
	obbj[index++]= sadd(input1, input2);
	obbj[index++] = ssub(input1, input2);
	obbj[index++] = smulty(input1, input2);
	obbj[index++] = sdiv(input1, input2);
	//化简input
	refs sinput1, sinput2;
	sinput1 = simplify(input1);
	sinput2 = simplify(input2);
	
	for (int i = 0; i < 4; ++i) {
		showRes(sinput1);
		printf(" %c ", tools[i]);
		showRes(sinput2);
		printf(" = ");
		showRes(obbj[i]);
		printf("\n");
	}
	
	system("PAUSE");
	return 0;
}

 

8.17 (Rational Numbers) Create a class called Rational for performing arithmetic with fractions. Write a program to test your class. Use integer variables to represent the private instance variables of the class the numerator and the denominator. Provide a constructor that enables an object of this class to be initialized when it is declared. The constructor should store the fraction in reduced form. The fraction 2/4 is equivalent to 1/2 and would be stored in the object as 1 in the numerator and 2 in the denominator. Provide a no-argument constructor with default values in case no initializers are provided. Provide public methods that perform each of the following operations: a. Add two Rational numbers: The result of the addition should be stored in reduced form. b. Subtract two Rational numbers: The result of the subtraction should be stored in reduced form. c. Multiply two Rational numbers: The result of the multiplication should be stored in reduced form. d. Divide two Rational numbers: The result of the division should be stored in reduced form. e. Print Rational numbers in the form a/b, where a is the numerator and b is the denominator. f. Print Rational numbers in floating-point format. (Consider providing formatting capabilities that enable the user of the class to specify the number of digits of precision to the right of the decimal point.) – 提示: – 有理数是有分子、分母以形式a/b表示的数,其中a是分子,b是分母。例如,1/3,3/4,10/4。 – 有理数的分母不能为0,分子却可以为0。每个整数a等价于有理数a/1。有理数用于分数的精确计算中。例如1/3=0.0000…,它不能使用数据类型double或float的浮点格式精确表示出来,为了得到准确结果,必须使用有理数。 – Java提供了整数和浮点数的数据类型,但是没有提供有理数的类型。 – 由于有理数与整数、浮点数有许多共同特征,并且Number类是数字包装的根类,因此,把有理数类Rational定义为Number类的一个子类是比较合适的。由于有理数是可比较的,那么Rational类也应该实现Comparable接口。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值