HDU 6333 Problem B. Harvest of Apples(莫对算法)

本文介绍了一种计算从编号为1到n的苹果树上摘取最多m个苹果的方法总数的算法。通过离线和莫对算法处理,解决在特定约束条件下如何高效计算组合数并求解模意义下的结果。

Problem B. Harvest of Apples

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 647    Accepted Submission(s): 235


 

Problem Description

There are n apples on a tree, numbered from 1 to n.
Count the number of ways to pick at most m apples.

 

 

Input

The first line of the input contains an integer T (1≤T≤105) denoting the number of test cases.
Each test case consists of one line with two integers n,m (1≤m≤n≤105).

 

 

Output

For each test case, print an integer representing the number of ways modulo 109+7.

 

 

Sample Input


 

2 5 2 1000 500

 

 

Sample Output


 

16 924129523

 

思路:
S(n+1,m)=2*S(n,m)-C(n,m);S(n,m+1)=S(n,m)+C(n,m+1)。
离线,莫对算法处理。

代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll mod=1e9+7;
const int maxn=1e5+10;
ll fac[maxn],inv[maxn],ans[maxn];
struct node
{
    int n,m,id;
};
vector<node>G[maxn];
bool cmp(const node &a,const node &b){return a.n<b.n;}
ll pow1(ll a,ll b)
{
    ll r=1;
    while(b)
    {
        if(b&1) r=r*a%mod;
        a=a*a%mod;
        b/=2;
    }
    return r;
}
void init()
{
    fac[0]=1;
    for(ll i=1;i<maxn;i++) fac[i]=fac[i-1]*i%mod;
    inv[maxn-1]=pow1(fac[maxn-1],mod-2);
    for(ll i=maxn-2;i>=0;i--) inv[i]=inv[i+1]*(i+1)%mod;
}
ll C(int n,int m)
{
    return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int main()
{
    init();
    int T;scanf("%d",&T);
    int unit=sqrt(maxn);
    for(int i=1;i<=T;i++)
    {
        node e;e.id=i;
        scanf("%d%d",&e.n,&e.m);
        G[e.m/unit+1].push_back(e);
    }
    for(int i=1;i<=unit+2;i++)
    {
        int len=G[i].size();
        if(!len)continue;
        sort(G[i].begin(),G[i].end(),cmp);
        int x=G[i][0].n,y=0;
        ll cnt=1;
        for(int j=0;j<G[i].size();j++)
        {
            node e=G[i][j];
            while(x<e.n) cnt=(2*cnt-C(x++,y)+mod)%mod;
            while(y<e.m) cnt=(cnt+C(x,++y))%mod;
            while(y>e.m) cnt=(cnt-C(x,y--)+mod)%mod;
            ans[e.id]=cnt;
        }
    }
    for(int i=1;i<=T;i++)
        printf("%lld\n",ans[i]);
    return 0;
}
基于STM32 F4的永磁同步电机无位置传感器控制策略研究内容概要:本文围绕基于STM32 F4的永磁同步电机(PMSM)无位置传感器控制策略展开研究,重点探讨在不依赖物理位置传感器的情况下,如何通过算法实现对电机转子位置和速度的精确估计与控制。文中结合嵌入式开发平台STM32 F4,采用如滑模观测器、扩展卡尔曼滤波或高频注入法等先进观测技术,实现对电机反电动势或磁链的估算,进而完成无传感器矢量控制(FOC)。同时,研究涵盖系统建模、控制算法设计、仿真验证(可能使用Simulink)以及在STM32硬件平台上的代码实现与调试,旨在提高电机控制系统的可靠性、降低成本并增强环境适应性。; 适合人群:具备一定电力电子、自动控制理论基础和嵌入式开发经验的电气工程、自动化及相关专业的研究生、科研人员及从事电机驱动开发的工程师。; 使用场景及目标:①掌握永磁同步电机无位置传感器控制的核心原理与实现方法;②学习如何在STM32平台上进行电机控制算法的移植与优化;③为开发高性能、低成本的电机驱动系统提供技术参考与实践指导。; 阅读建议:建议读者结合文中提到的控制理论、仿真模型与实际代码实现进行系统学习,有条件者应在实验平台上进行验证,重点关注观测器设计、参数整定及系统稳定性分析等关键环节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值