Educational Codeforces Round 43 (Rated for Div. 2) A. Minimum Binary Number

本文介绍了一种通过交换相邻字符或替换特定字符的方式将给定的正确二进制字符串转换为最小可能值的方法。文章提供了算法思路及实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A. Minimum Binary Number
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

String can be called correct if it consists of characters "0" and "1" and there are no redundant leading zeroes. Here are some examples: "0", "10", "1001".

You are given a correct string s.

You can perform two different operations on this string:

  1. swap any pair of adjacent characters (for example, "101 "110");
  2. replace "11" with "1" (for example, "110 "10").

Let val(s) be such a number that s is its binary representation.

Correct string a is less than some other correct string b iff val(a) < val(b).

Your task is to find the minimum correct string that you can obtain from the given one using the operations described above. You can use these operations any number of times in any order (or even use no operations at all).

Input

The first line contains integer number n (1 ≤ n ≤ 100) — the length of string s.

The second line contains the string s consisting of characters "0" and "1". It is guaranteed that the string s is correct.

Output

Print one string — the minimum correct string that you can obtain from the given one.

Examples
input
Copy
4
1001
output
Copy
100
input
Copy
1
1
output
Copy
1
Note

In the first example you can obtain the answer by the following sequence of operations: "1001 "1010 "1100 "100".

In the second example you can't obtain smaller answer no matter what operations you use.

题解:
因为不存在前导0,因此第一位一定是1,后面的1一定可以移到前面
与前面的1抵消,最后只剩一个1。
代码:
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=104;
char t[maxn];
int main()
{
	int n;scanf("%d",&n);
	scanf("%s",&t);
	int x1=0,x2=0;
	for(int i=0;i<n;i++)
	{
		if(t[i]=='0')x1++;
		else x2++;
	}
	for(int i=0;i<min(x2,1);i++)printf("1");
	for(int i=0;i<x1;i++)printf("0");
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值