Start from here

从12年初踏入IT行业,作者经历了半年的WebService开发和大部分时间的Android应用开发。通过自学,他亲手开发了五个APP和一个LBS应用,尽管过程充满挑战,但作者始终怀揣成为牛人的梦想,并相信每一次尝试都能带来成长。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从12年初开始转入IT这个行业,现在也有两年多了。期间半年写webservice,其它时间都在搞Android。

刚开始的时候,一直想找个牛人带带,无奈身边无资源,于是只能自学成材了。到现在,自己亲手(都在小公司蹲着,各个环节都只能亲自操刀了哭

开发了五个APP一个LBS,其它都是移动办公类),发现自己还是没啥成就感,总是感觉下一个APP,我会做得更好。这或者说明我的成长速度还是可以的大笑


I have a dream ,to be a  niubility person ! so ,let's start from here!



内容概要:该论文聚焦于T2WI核磁共振图像超分辨率问题,提出了一种利用T1WI模态作为辅助信息的跨模态解决方案。其主要贡献包括:提出基于高频信息约束的网络框架,通过主干特征提取分支和高频结构先验建模分支结合Transformer模块和注意力机制有效重建高频细节;设计渐进式特征匹配融合框架,采用多阶段相似特征匹配算法提高匹配鲁棒性;引入模型量化技术降低推理资源需求。实验结果表明,该方法不仅提高了超分辨率性能,还保持了图像质量。 适合人群:从事医学图像处理、计算机视觉领域的研究人员和工程师,尤其是对核磁共振图像超分辨率感兴趣的学者和技术开发者。 使用场景及目标:①适用于需要提升T2WI核磁共振图像分辨率的应用场景;②目标是通过跨模态信息融合提高图像质量,解决传统单模态方法难以克服的高频细节丢失问题;③为临床诊断提供更高质量的影像资料,帮助医生更准确地识别病灶。 其他说明:论文不仅提供了详细的网络架构设计与实现代码,还深入探讨了跨模态噪声的本质、高频信息约束的实现方式以及渐进式特征匹配的具体过程。此外,作者还对模型进行了量化处理,使得该方法可以在资源受限环境下高效运行。阅读时应重点关注论文中提到的技术创新点及其背后的原理,理解如何通过跨模态信息融合提升图像重建效果。
% point stabilization + Single shooting clear all close all clc import casadi.* T = 0.15; % sampling time [s] N = 25; % prediction horizon rob_diam = 4.88; %visualization Tp_max = 400; Tp_min = -400; Ts_max = 400; Ts_min = -400; u=SX.sym('u'); v = SX.sym('v'); r = SX.sym('r'); x = SX.sym('x'); y = SX.sym('y'); psi = SX.sym('psi'); obs = SX.sym('obs'); states = [u;v;r;x;y;psi;obs]; n_states = length(states); Tp = SX.sym('Tp');Ts = SX.sym('Ts'); controls = [Tp;Ts]; n_controls = length(controls); % mathetical model rhs = [-1.1391*u+0.0028*(Tp+Ts)+0.6836; 0.0161*v-0.0052*r+0.002*(Tp-Ts)*2.44/2+0.0068; 8.2861*v-0.9860*r+0.0307*(Tp-Ts)*2.44/2+1.3276; u*cos(psi)-v*sin(psi); u*sin(psi)+v*cos(psi); r; -1.5]; % system r.h.s plus part f = Function('f',{states,controls},{rhs}); % nonlinear mapping function f(x,u) U = SX.sym('U',n_controls,N); % Decision variables (controls) P = SX.sym('P',n_states + n_states); %stares and ref % parameters (which include the initial and the reference state of the robot) X = SX.sym('X',n_states,(N+1)); % A Matrix that represents the states over the optimization problem. % compute solution symbolically X(:,1) = P(1:7); % initial state for k = 1:N st = X(:,k); con = U(:,k); f_value = f(st,con); %4-RK % k1 = f(st, con); % new % k2 = f(st + T/2*k1, con); % new % k3 = f(st + T/2*k2, con); % new % k4 = f(st + T*k3, con); % new % st_next=st +T/6*(k1 +2*k2 +2*k3 +k4); % new st_next = st+ (T*f_value); X(:,k+1) = st_next; end % this function to get the optimal trajectory knowing the optimal solution ff=Function('ff',{U,P},{X}); obj = 0; % Objective function g = []; % constraints vector Q = zeros(7,7); Q(1,1)=1; Q(2,2)=0.1;Q(3,3)=0.1; Q(4,4) = 100;Q(5,5) = 100;Q(6,6) = 0.1; % weighing matrices (states) R = zeros(2,2); R(1,1) = 0.03; R(2,2) = 0.001;% weighing matrices (controls) % compute objective for k=1:N st = X(:,k); con = U(:,k); obj = obj+(st-P(8:14))'*Q*(st-P(8:14)) + con'*R*con; % calculate obj end % Add constraints for collision avoidance obs_x = 0; % meters Beam = 2.44; % compute constraints for k = 1:N+1 % box constraints due to the map margins g = [g ; -sqrt((X(4,k)-obs_x)^2+(X(5,k)-X(7,k))^2) + (4.88+0.5)]; end % make the decision variables one column vector OPT_variables = reshape(U,n_controls*N,1); %variables must be vector nlp_prob = struct('f', obj, 'x', OPT_variables, 'g', g, 'p', P); opts = struct; opts.ipopt.max_iter = 100; opts.ipopt.print_level =0;%0,3 opts.print_time = 0; opts.ipopt.acceptable_tol =1e-8; opts.ipopt.acceptable_obj_change_tol = 1e-6; solver = nlpsol('solver', 'ipopt', nlp_prob,opts); args = struct; % inequality constraints (state constraints) args.lbg = -inf; % inequality constraints args.ubg = 0; % inequality constraints % input constraints args.lbx(1:2:2*N-1,1) = Ts_min; args.ubx(1:2:2*N-1,1) = Tp_max; args.lbx(2:2:2*N,1) = Ts_min; args.ubx(2:2:2*N,1) = Ts_max; %---------------------------------------------- % ALL OF THE ABOVE IS JUST A PROBLEM SETTING UP % THE SIMULATION LOOP SHOULD START FROM HERE %------------------------------------------- t0 = 0; x0 = [0;0;0; 0 ; 0 ; 90*pi/180; 55]; % initial condition. load ref_usv_line2 ref_usv_line2 ref = ref_usv_line2(1:7,1:1:end); % Reference trajectory xx(:,1) = x0; % xx contains the history of states t(1) = t0; u0 = zeros(N,2); % 2 control inputs sim_tim = 35; % Maximum simulation time % Start MPC mpciter = 0; xx1 = []; u_cl=[]; % the main simulaton loop... it works as long as the error is greater % than 10^-2 and the number of mpc steps is less than its maximum % value. main_loop = tic; while(mpciter < sim_tim / T) xs = ref(:,mpciter+1); args.p = [x0;xs]; % set the values of the parameters vector args.x0 = reshape(u0',n_controls*N,1); % initial value of the optimization variables %tic sol = solver('x0', args.x0, 'lbx', args.lbx, 'ubx', args.ubx,... 'lbg', args.lbg, 'ubg', args.ubg,'p',args.p); %toc uu = reshape(full(sol.x)',n_controls,N)'; ff_value = ff(uu',args.p); % compute OPTIMAL solution TRAJECTORY xx1(:,1:7,mpciter+1)= full(ff_value)'; u_cl= [u_cl ; uu(1,:)]; t(mpciter+1) = t0; [t0, x0, u0] = shift_control2ship(T, t0, x0, uu,f); % get the initialization of the next optimization step xx(:,mpciter+2) = x0; mpciter mpciter = mpciter + 1; end main_loop_time = toc(main_loop); ss_error = norm((x0-xs),2) average_mpc_time = main_loop_time/(mpciter+1) % U_pre = xx(1,2:end);V_pre = xx(2,2:end); R_pre = xx(3,2:end); % X_pre = xx(4,:);Y_pre = xx(5,:); YY_pre=xx(7,:); % plot(X_pre,Y_pre);hold on % plot(zeros(1,301),YY_pre);axis([-5 5 0 60]) obs_diam = 4; Draw_MPC_PSship_tracking_dynamicObstacles (t,xx,xx1,u_cl,xs,N,rob_diam,obs_diam,ref)在此代码上进行修改,加入卷积神经网络,提高模型的泛化能力和识别准确度。要完整代码
05-15
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值