BP神经网络训练程序.
P=-1:0.1:1
T=[-0.9602 -0.5770 -0.0729 0.3771 0.6405 0.6600 0.4609 0.1336 -0.2013 -0.4344 -0.5000 -.03930 -0.1647 0.0988 0.3027 0.3960 0.3449 0.1816 -0.0312 -0.2189 -0.3201]
plot(P,T);
s=3:8;
% s=3;
res=1:6;
for i=1:6
net=newff(minmax(P),[s(i),1],{'tansig','logsig'},'traingdx');
% net=newff(minmax(P),[s,1],{'tansig','logsig'},'traingdx');
net.trainParam.epochs=2000;%最大训练步数
net.trainParam.gpal=0.001;%性能参数
net=train(net,P,T)%训练权阈值
y=sim(net,P);%对神经网络进行仿真
error=y-T;%误差
res(i)=norm(error);
% res=norm(error)
end
BPN训练1
最新推荐文章于 2025-07-29 19:43:47 发布