https://www.patest.cn/contests/pat-a-practise/1135
There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:
(1) Every node is either red or black.
(2) The root is black.
(3) Every leaf (NULL) is black.
(4) If a node is red, then both its children are black.
(5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.
For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not.
![]() |
![]() |
![]() |
|
|
|
|
For each given binary search tree, you are supposed to tell if it is a legal red-black tree.
Input Specification:
Each input file contains several test cases. The first line gives a positive integer K (<=30) which is the total number of cases. For each case, the first line gives a positive integer N (<=30), the total number of nodes in the binary tree. The second line gives the preorder traversal sequence of the tree. While all the keys in a tree are positive integers, we use negative signs to represent red nodes. All the numbers in a line are separated by a space. The sample input cases correspond to the trees shown in Figure 1, 2 and 3.
Output Specification:
For each test case, print in a line "Yes" if the given tree is a red-black tree, or "No" if not.
Sample Input:3 9 7 -2 1 5 -4 -11 8 14 -15 9 11 -2 1 -7 5 -4 8 14 -15 8 10 -7 5 -6 8 15 -11 17Sample Output:
Yes No No
#include
#include
using namespace std;
enum color {
red,
black
};
struct Node {
int data;
color colour;
Node * left;
Node * right;
Node() {
data = 0;
colour = black;
left = NULL;
right = NULL;
}
};
void addchild(int num, Node * tree)
{
int abs = num<0 ? -num : num;
if (tree->data>abs)
if (tree->left == NULL)
{
Node * newnode = new Node;
newnode->data = abs;
newnode->colour = num<0 ? red : black;
tree->left = newnode;
}
else
addchild(num, tree->left);
else
{
if (tree->right == NULL)
{
Node * newnode = new Node;
newnode->data = abs;
newnode->colour = num<0 ? red : black;
tree->right = newnode;
}
else
addchild(num, tree->right);
}
}
bool traversal1(Node * tree)
{
bool islegal = true;
if (tree->colour == red)
if ((tree->left != NULL&&tree->left->colour == red) || (tree->right != NULL&&tree->right->colour == red))
return false;
if (tree->left != NULL)
islegal &= traversal1(tree->left);
if (tree->right != NULL)
islegal &= traversal1(tree->right);
return islegal;
}
int blacknum = -1;
bool traversal2(Node * tree, int numofblack)
{
if (tree->colour == black)numofblack++;
if (tree->left == NULL&&tree->right == NULL)
{
if (blacknum == -1)
blacknum = numofblack;
else
if (blacknum != numofblack)
return false;
}
bool islegal = true;
if (tree->left != NULL)
islegal &= traversal2(tree->left, numofblack);
if (tree->right != NULL)
islegal &= traversal2(tree->right, numofblack);
return islegal;
}
vector pre;
void preordert(Node * tree)
{
pre.push_back(tree->colour == black ? tree->data : -tree->data);
if (tree->left != NULL)
preordert(tree->left);
if (tree->right != NULL)
preordert(tree->right);
}
int main()
{
int K;
cin >> K;
for (int i = 0; i> N;
int input;
cin >> input;
inputs[0] = input;
if (input <= 0)
islegal = false;
treeroot->data = input<0 ? -input : input;
treeroot->colour = input<0 ? red : black;
for (int j = 0; j> input;
inputs[j + 1] = input;
if (input == 0)
islegal = false;
addchild(input, treeroot);
}
pre.clear();
preordert(treeroot);
for (int j = 0; j

本文介绍了一种通过先序遍历来判断给定二叉搜索树是否为合法红黑树的方法。红黑树是一种自平衡二叉查找树,具备特定的颜色属性及平衡条件。文章详细解释了红黑树的五个特性,并提供了实现代码,通过构造二叉搜索树并检查其是否符合红黑树的定义。



3072

被折叠的 条评论
为什么被折叠?



