GMM与EM算法的Python实现
高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计。
1. 高斯混合模型(Gaussian Mixture models, GMM)
高斯混合模型(Gaussian Mixture Model,GMM)是一种软聚类模型。 GMM也可以看作是K-means的推广,因为GMM不仅是考虑到了数据分布的均值,也考虑到了协方差。和K-means一样,我们需要提前确定簇的个数。
GMM的基本假设为数据是由几个不同的高斯分布的随机变量组合而成。如下图,我们就是用三个二维高斯分布生成的数据集。
在高斯混合模型中,我们需要估计每一个高斯分布的均值与方差。从最大似然估计的角度来说,给定某个有n个样本的数据集X,假如已知GMM中一共有k 簇,我们就是要找到k组均值μ1,⋯,μk,k组方差σ1,⋯,σk 来最大化以下似然函数L

这里直接计算似然函数比较困难,于是我们引入隐变量(latent variable),这里的隐变量就是每个样本属于每一簇的概率。假设W是一个n×k的矩阵,其中 Wi,j 是第 i 个样本属于第 j 簇的概率。
在已知W的情况下,我们就很容易计算似然函数LW,
将其写成
其中P(Xi | μj, σj) 是样本Xi在第j个高斯分布中的概率密度函数。
以一维高斯分布为例,
2. 最大期望算法(Expectation–Maximization, EM)
有了隐变量还不够,我们还需要一个算法来找到最佳的W,从而得到GMM的模型参数。EM算法就是这样一个算法。
简单说来,EM算法分两个步骤。
- 第一个步骤是E(期望),用来更新隐变量WW;
- 第二个步骤是M(最大化),用来更新GMM中各高斯分布的参量μj, σj。
然后重复进行以上两个步骤,直到达到迭代终止条件。
3. 具体步骤以及Python实现
完整代码在第4节。
首先,我们先引用一些我们需要用到的库和函数。
1 import numpy as np 2 import matplotlib.pyplot as plt