[GeeksForGeeks] Friends Pairing Problem

本文探讨了n个朋友之间的配对问题,通过递归和动态规划两种方法计算所有可能的配对方式数量,并使用DFS+回溯算法生成所有配对组合。

Given n friends, each one can remain single or can be paired up with some other friend. Each friend can be paired only once. Find out the total number of ways in which friends can remain single or can be paired up.

Examples:

Input  : n = 3
Output : 4
Explanation
{1}, {2}, {3} : all single
{1}, {2,3} : 2 and 3 paired but 1 is single.
{1,2}, {3} : 1 and 2 are paired but 3 is single.
{1,3}, {2} : 1 and 3 are paired but 2 is single.
Note that {1,2} and {2,1} are considered same.

 

 The problem itself is pretty straightforward with the following optimal substructure:

f(n) = f(n - 1) + (n - 1) * f(n - 2);

 

To make it more challenging, write a method that generates all possible pairing ways and save them in a list.

This is a dfs + backtracking question.

Provided the optimal substructure, we know that for a given person, either he is single or he pairs with one other person.

If he is single, we simply reduce the problem to be one fewer person smaller;

If he is paired with another person, we pick one from all the available persons pool.

To avoid duplicated answers, we only pick person with a bigger number as the pair of the current person.   

We also need a global flag for each person to indicate if a person has been picked or not. This is needed because when picking 

a pair, there will be persons left in between these 2 picked persons and these left persons have not been picked yet. The remaining 

subproblem should include these unpicked persons. By only advancing the current index does not address this issue. 

 

 1 import java.util.List;
 2 import java.util.ArrayList;
 3 
 4 public class FriendsPairing {
 5     //f(n) = f(n - 1) + (n - 1) * f(n - 2);
 6     //Recursive solution
 7     public static int pairingWaysRecursion(int n) {
 8         if(n <= 1) {
 9             return 1;
10         }
11         return pairingWaysRecursion(n - 1) + (n - 1) * pairingWaysRecursion(n - 2);
12     }
13     //Dynamic Programming 
14     public static int pairingWaysDp(int n) {
15         int[] T = new int[n + 1];
16         T[0] = 1;
17         T[1] = 1;
18         for(int i = 2; i <= n; i++) {
19             T[i] = T[i - 1] + (i - 1) * T[i - 2];
20         }
21         return T[n];
22     }
23     //Dfs + backtracking to get all pairing ways
24     public static List<List<List<Integer>>> getAllPairingWays(int n) {
25         boolean[] available = new boolean[n + 1];
26         for(int i = 1; i <= n; i++) {
27             available[i] = true;
28         }
29         List<List<List<Integer>>> ways = new ArrayList<>();
30         getAllWaysDfs(ways, new ArrayList<>(), available, n, 1, 0);
31         return ways;
32     }
33     private static void getAllWaysDfs(List<List<List<Integer>>> ways, 
34                                 List<List<Integer>> way,
35                                 boolean[] available, int n, int currIdx, int addedCount) {
36         if(addedCount == n) {
37             ways.add(new ArrayList<List<Integer>>(way));
38             return;
39         }
40         for(int i = currIdx; i <= n; i++) {
41             if(available[i]) {
42                 ArrayList<Integer> group1 = new ArrayList<Integer>();
43                 group1.add(i);
44                 way.add(group1);
45                 available[i] = false;
46                 getAllWaysDfs(ways, way, available, n, i + 1, addedCount + 1);            
47                 way.remove(way.size() - 1);    
48                 
49                 int j = i + 1;
50                 for(; j <= n; j++) {
51                     if(available[j]) {
52                         ArrayList<Integer> group2 = new ArrayList<Integer>();
53                         group2.add(i);
54                         group2.add(j);
55                         way.add(group2);
56                         available[j] = false;
57                         getAllWaysDfs(ways, way, available, n, i + 1, addedCount + 2);        
58                         way.remove(way.size() - 1);
59                         available[j] = true;
60                     }
61                 }
62                 available[i] = true;
63             }
64         }
65     }
66     public static void main(String[] args) {
67         System.out.println(pairingWaysDp(3));
68         System.out.println(pairingWaysDp(6));
69         List<List<List<Integer>>> ways = getAllPairingWays(3);
70         for(int i = 0; i < ways.size(); i++) {
71             for(int j = 0; j < ways.get(i).size(); j++) {
72                 for(int k = 0; k < ways.get(i).get(j).size(); k++) {
73                     System.out.print(ways.get(i).get(j).get(k) + ",");
74                 }
75                 System.out.print("  ");
76             }
77             System.out.println();
78         }
79     }
80 }

 

 

 

 

 

Related Problems 

Permutations 

Permutations II





转载于:https://www.cnblogs.com/lz87/p/7594929.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值