[Coding Made Simple] Burst Balloon

本文介绍了一个关于气球爆破获取最大金币数的问题,并通过动态规划的方式给出了详细的解决方案。文章详细阐述了状态转移方程及初始化过程,并提供了一段Java实现代码。

Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by array nums. You are asked to burst all the balloons. If the you burst balloon i you will get nums[left] * nums[i] * nums[right] coins. Here left and right are adjacent indices of i. After the burst, the left and right then becomes adjacent.

Find the maximum coins you can collect by bursting the balloons wisely.
- You may imagine nums[-1] = nums[n] = 1. They are not real therefore you can not burst them.
- 0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100

Example

Given [4, 1, 5, 10]
Return 270

nums = [4, 1, 5, 10] burst 1, get coins 4 * 1 * 5 = 20
nums = [4, 5, 10]    burst 5, get coins 4 * 5 * 10 = 200 
nums = [4, 10]       burst 4, get coins 1 * 4 * 10 = 40
nums = [10]          burst 10, get coins 1 * 10 * 1 = 10

Total coins 20 + 200 + 40 + 10 = 270

 

Dynamic Programming Solution

A straightforward solution is to use recursion. Take the given example[4, 1, 5, 10].

The following recursion tree shows that the recursive approach has an overlapping subproblems issue. 

                              4, 1, 5, 10

      1, 5, 10            4, 5, 10                4, 1, 10,                 4, 1, 5        

5, 10             1, 10           1, 5    5, 10         4, 10       4,5         1, 10  4,10   4,1        1,5    4,5     4,1 

 

Dynamic Programming Solution

State: T[i][j] stores the max value of bursting ballons i to j and the last ballon that is bursted to get this max.

Function: T[i][j].maxV = max{T[i][k - 1].maxV + T[k + 1][j].maxV + arr[i - 1] * arr[k] * arr[j + 1]};

     T[i][j].lastBurstIdx is the k in [i, j] that gives the max value to T[i][j].maxV.

Init: T[i][i].maxV = arr[i - 1] * arr[i] * arr[i + 1]; T[i][j].lastBurstIdx = i.

 

 1 import java.util.Stack;
 2 
 3 class Entry {
 4     int maxV;
 5     int lastBurstIdx;
 6     Entry(int v, int i) {
 7         this.maxV = v;
 8         this.lastBurstIdx = i;
 9     }
10 }
11 public class BurstBallon {
12     private Stack<Integer> burstSeq;
13     public int getMaxPoint(int[] arr) {
14         burstSeq = new Stack<Integer>();
15         if(arr == null || arr.length == 0) {
16             return 0;
17         }
18         Entry[][] T = new Entry[arr.length][arr.length];
19         for(int i = 0; i < T.length; i++) {
20             for(int j = i; j < T.length; j++) {
21                 T[i][j] = new Entry(0, -1);
22             }
23         }
24         for(int i = 0; i < T.length; i++) {
25             int left = i - 1 >= 0 ? arr[i - 1] : 1;
26             int right = i + 1 < T.length ? arr[i + 1] : 1;
27             T[i][i].maxV = left * arr[i] * right;
28             T[i][i].lastBurstIdx = i;
29         }
30         for(int len = 2; len <= arr.length; len++) {
31             for(int i = 0; i <= arr.length - len; i++) {
32                 int j = i + len - 1;
33                 for(int lastBurst = i; lastBurst <= j; lastBurst++) {
34                     int outerLeft = (i - 1) >= 0 ? arr[i - 1] : 1;
35                     int outerRight = (j + 1) < arr.length ? arr[j + 1] : 1;
36                     int midValue = outerLeft * arr[lastBurst] * outerRight;
37                     int leftMax = i <= lastBurst - 1 ? T[i][lastBurst - 1].maxV : 0;
38                     int rightMax = lastBurst + 1 <= j ? T[lastBurst + 1][j].maxV : 0;
39                     int currValue = leftMax + midValue + rightMax;
40                     if(currValue > T[i][j].maxV) {
41                         T[i][j].maxV = currValue;
42                         T[i][j].lastBurstIdx = lastBurst;
43                     }
44                 }
45             }
46         }
47         //reconstruct one burst sequence that gives the best result
48         reconstructOneBestSequence(T, 0, arr.length - 1, burstSeq);
49         return T[0][arr.length - 1].maxV;
50     }
51     private void reconstructOneBestSequence(Entry[][] T, int start, int end, Stack<Integer> burstSeq) {
52         if(end < start) {
53             return;
54         }
55         burstSeq.push(T[start][end].lastBurstIdx);
56         reconstructOneBestSequence(T, start, T[start][end].lastBurstIdx - 1, burstSeq);
57         reconstructOneBestSequence(T, T[start][end].lastBurstIdx + 1, end, burstSeq);
58     }
59     public static void main(String[] args) {
60         int[] arr = {4,1,5,10};
61         BurstBallon test = new BurstBallon();
62         //expect 270
63         System.out.println(test.getMaxPoint(arr));
64         //expect 1, 2, 0, 3 
65         while(!test.burstSeq.isEmpty()) {
66             System.out.println(test.burstSeq.pop());
67         }
68     }
69 }

 

转载于:https://www.cnblogs.com/lz87/p/7288854.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值