There is a stone game.At the beginning of the game the player picks n piles of stones in a line.
The goal is to merge the stones in one pile observing the following rules:
- At each step of the game,the player can merge two adjacent piles to a new pile.
- The score is the number of stones in the new pile.
You are to determine the minimum of the total score.
For [4, 1, 1, 4], in the best solution, the total score is 18:
1. Merge second and third piles => [4, 2, 4], score +2
2. Merge the first two piles => [6, 4],score +6
3. Merge the last two piles => [10], score +10
Other two examples:[1, 1, 1, 1] return 8[4, 4, 5, 9] return 43
From the given example[4, 1, 1, 4] it looks like a greedy alogrithm of always picking two piles with smaller values
should solve this problem. However, as most of the time that an obvious greedy alogrithm is incorrect, this time is
no exception.
Counter example: [6, 4, 4, 6]
If we pick 4 + 4, score = 8, [6, 8, 6]
then we pick 6 + 8, score = 22, [14, 6]
finally we pick 14 + 6, score = 42.
If we pick 6 + 4, score = 10, [10, 4, 6]
then we pick 4 + 6 = 10, score = 20, [10, 10]
finally we pick 10 + 10, score = 40.
First thought: Recursion
for all stones A[0]....A[n - 1], we can solve this problem using the following formula.
f(0, n - 1) = min{f(0, k) + f(k + 1, n - 1) + sum[0... n - 1]}, for all k: [0, n - 2]
Using this formula, we can recursively solve all subproblems.
Alert: do we have the overlapping subproblems issue?
Yes, we do have.
For example: to solve f(0, 4), we have to solve f(0, 0), f(1, 4), f(0, 1), f(2, 4), f(0, 2), f(3, 4), f(0, 3), f(4, 4)
to solve f(0, 3), we have to solve f(0, 0), f(1, 3), f(0, 1), f(2, 3), f(0, 2), f(3, 3)
The subproblems in red are redundantly computed.
So there is the all-mighty dynamic programming solution.
State:
dp[i][j] represents the min cost of merging A[i...j];
Function:
dp[i][j] = min{dp[i][k] + dp[k + 1][j] + prefixSum[j + 1] - prefixSum[i]} for all k: [i, j - 1]
Initialization:
dp[i][i] = 0;
dp[i][j] = Integer.MAX_VALUE for all j > i;
prefixSum[i]: the sum of the first ith elements of A;
Answer:
dp[0][A.length - 1];
Runtime: O(n^2) n - 1 + n - 2 + n - 3 + ...... + 1, for each fixed length len, we have n - len + 1 different start positions.
Space: O(n^2)
This problem is different with typical dp problems in the for-loop.
To correctly solve this problem, we must solve all subproblems of smaller length.
As a result, instead of the typical for loop as shown in the following incorrect
solution, we need to do a for loop with subproblem's length and its start index.
For example, in the incorrect solution, to solve dp[0][3], we need to solve
dp[0][0], dp[1][3], dp[0][1], dp[2][3], dp[0][2], dp[3][3].
But when trying to solve dp[0][3], i == 0, dp[1][3] and dp[2][3] have not been
solved yet!!
But if we first solve smaller subproblems of length 2 and 3, we can then solve
dp[0][3] of length 4 correctly.
length 2: dp[0][1] dp[2][3]
length 3: dp[1][3] dp[0][2]
Incorrect bottom up dp algorithm
1 public class Solution { 2 public int stoneGame(int[] A) { 3 if(A == null || A.length <= 1){ 4 return 0; 5 } 6 int[] prefixSum = new int[A.length + 1]; 7 for(int i = 1; i <= A.length; i++){ 8 prefixSum[i] = prefixSum[i - 1] + A[i - 1]; 9 } 10 int[][] dp = new int[A.length][A.length]; 11 for(int i = 0; i < A.length - 1; i++){ 12 for(int j = i + 1; j < A.length; j++){ 13 dp[i][j] = Integer.MAX_VALUE; 14 } 15 } 16 for(int i = 0; i < A.length; i++){ 17 dp[i][i] = 0; 18 } 19 for(int i = 0; i < A.length - 1; i++){ 20 for(int j = i + 1; j < A.length; j++){ 21 for(int k = i; k < j; k++){ 22 dp[i][j] = Math.min(dp[i][j], dp[i][k] + dp[k + 1][j] + prefixSum[j + 1] - prefixSum[i]); 23 } 24 } 25 } 26 return dp[0][A.length - 1]; 27 } 28 }
Correct bottom up dp solution
1 public class Solution { 2 public int stoneGame(int[] A) { 3 if(A == null || A.length <= 1){ 4 return 0; 5 } 6 int[] prefixSum = new int[A.length + 1]; 7 for(int i = 1; i <= A.length; i++){ 8 prefixSum[i] = prefixSum[i - 1] + A[i - 1]; 9 } 10 int[][] dp = new int[A.length][A.length]; 11 for(int i = 0; i < A.length - 1; i++){ 12 for(int j = i + 1; j < A.length; j++){ 13 dp[i][j] = Integer.MAX_VALUE; 14 } 15 } 16 for(int i = 0; i < A.length; i++){ 17 dp[i][i] = 0; 18 } 19 for(int len = 2; len <= A.length; len++){ 20 for(int start = 0; start + len - 1 < A.length; start++){ 21 int end = start + len - 1; 22 for(int k = start; k < end; k++){ 23 dp[start][end] = Math.min(dp[start][end], 24 dp[start][k] + dp[k + 1][end] + prefixSum[end + 1] - prefixSum[start]); 25 } 26 } 27 } 28 return dp[0][A.length - 1]; 29 } 30 }
Related Problems
Minimum Cost to Merge Stones (Generalized version)
本文探讨了一个关于合并石头堆的游戏问题,目标是最小化合并所有石头堆为一堆的总得分。通过分析示例发现简单的贪心算法不适用,并提出使用动态规划的方法解决该问题。文中详细解释了状态定义、递推公式、初始化及最终答案的获取。
300

被折叠的 条评论
为什么被折叠?



