Largest Rectangle in a Histogram

本文介绍了一种算法,用于解决求解直方图中最大矩形面积的问题。通过预处理得到每个柱子左右可扩展的最大范围,利用两次遍历实现高效计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:

Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

Input

The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1 <= n <= 100000. Then follow n integers h1, ..., hn, where 0 <= hi <= 1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

Output

For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

Sample Input

7 2 1 4 5 1 3 3
4 1000 1000 1000 1000
0

Sample Output

8
4000

题意很直观,就是求一个直方图当中矩形最大的面积。从图片就可以看出,就是判断他向左或者向右延伸的位置,然后判断是否是个最大的矩形。重点就是这次的dp和以往的不同,他是一直找下去不回头的那种,就和深搜有些像。

#include<stdio.h>
#include<string.h>
#include<algorithm>
#define inf 0x3f3f3f3f
using namespace std;
long long int h[101010],l[101010],r[101010],n;
int main()
{
    while(~scanf("%lld",&n)&&n)
    {
        long long int sum,maxx=-1;
        h[0]=-1;
        h[n+1]=-inf;
        for(int i=1; i<=n; i++)
        {
            scanf("%lld",&h[i]);
            l[i]=i;
            r[i]=i;
        }
        for(int i=1; i<=n; i++)
        {
            while(h[l[i]-1]>=h[i])
                l[i]=l[l[i]-1];
        }
        for(int i=n; i>0; i--)
        {
            while(h[r[i]+1]>=h[i])
                r[i]=r[r[i]+1];
        }
        for(int i=1; i<=n; i++)
        {
            sum=(r[i]-l[i]+1)*h[i];
            maxx=max(sum,maxx);
        }
        printf("%lld\n",maxx);
    }
    return 0;
}
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值