- 博客(1)
- 资源 (1)
- 收藏
- 关注
转载 欢迎使用优快云-markdown编辑器
欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图片链接和图片上传 LaTex数学公式 UML序列图和流程图 离线写博客 导入导出Markdown文件 丰富的快捷键 快捷键 加粗 Ctrl + B 斜体 Ctrl + I 引用 Ctrl
2015-11-11 08:53:31
119
Data.Algorithms
With the development of massive search engines (such as Google and Yahoo!), genomic
analysis (in DNA sequencing, RNA sequencing, and biomarker analysis), and social
networks (such as Facebook and Twitter), the volumes of data being generated and
processed have crossed the petabytes threshold. To satisfy these massive computational
requirements, we need efficient, scalable, and parallel algorithms. One framework to
tackle these problems is the MapReduce paradigm.
MapReduce is a software framework for processing large (giga-, tera-, or petabytes)
data sets in a parallel and distributed fashion, and an execution framework for large-
scale data processing on clusters of commodity servers. There are many ways to
implement MapReduce, but in this book our primary focus will be Apache Spark and
MapReduce/Hadoop. You will learn how to implement MapReduce in Spark and
Hadoop through simple and concrete examples.
2015-08-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅