决策树


class Branch:
    no=0
    depth=1
    column=''
    entropy=0
    samples=0
    value=[]
    
    branch_positive=None
    branch_negative=None
    no_positive=0
    no_negative=0

number=0

def decision_tree_inner(data, label, depth, max_depth=3):
    global number
    branch = Branch()
    branch.no=number
    number=number+1
    branch.depth=depth
    
    branch.samples=data.shape[0]
    n_positive=data[data[label]==1].shape[0]
    branch.value=[branch.samples-n_positive,n_positive]
    branch.entropy=information_entropy(branch.value)
    best_feature = find_best_feature(data, label)
    branch.column=best_feature[0]
    new_entropy=best_feature[1]
    if depth==max_depth or branch.column=='':
        branch.no_positive=number
        number=number+1
        branch.no_negative=number
        number=number+1
        return branch
    else:
        data_negative=best_feature[3]
        branch.branch_negative=decision_tree_inner(data_negative, label, depth+1, max_depth=max_depth)
        data_positive=best_feature[2]
        branch.branch_positive=decision_tree_inner(data_positive, label, depth+1, max_depth=max_depth)

        return branch

def decision_tree(data, label, max_depth=3):
    number=0
    entropy=data_entropy(data)
    tree=decision_tree_inner(data, label, 0, max_depth=3)
    return tree


my_dt = decision_tree(data_train, 'low', max_depth=2)


from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier(criterion='entropy', max_depth=3)
model=dt.fit(X_train, y_train)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值