Machine Learning Books Suggested by Michael I. Jordan from Berkeley

著名学者Michael I. Jordan 推荐了一系列深度学习与统计学的基础书籍,覆盖了从经典到前沿的多个领域,包括贝叶斯统计、频数统计、概率论、优化、线性代数、信息论、泛函分析等,旨在为投入大量时间研究该领域的专业人士提供快速深入学习路径。

There has been a Machine Learning (ML) reading list of books in hacker news for a while, where Professor Michael I. Jordan recommend some books to start on ML for people who are going to devote many decades of their lives to the field, and who want to get to the research frontier fairly quickly. Recently he articulated the relationship between CS and Stats amazingly well in his recent reddit AMA, in which he also added some books that dig still further into foundational topics. I just list them here for people’s convenience and my own reference.

  • Frequentist Statistics
    1. Casella, G. and Berger, R.L. (2001). “Statistical Inference” Duxbury Press.—Intermediate-level statistics book.
    2. Ferguson, T. (1996). “A Course in Large Sample Theory” Chapman & Hall/CRC.—For a slightly more advanced book that’s quite clear on mathematical techniques.
    3. Lehmann, E. (2004). “Elements of Large-Sample Theory” Springer.—About asymptotics which is a good starting place.
    4. Vaart, A.W. van der (1998). “Asymptotic Statistics” Cambridge.—A book that shows how many ideas in inference (M estimation, the bootstrap, semiparametrics, etc) repose on top of empirical process theory.
    5. Tsybakov, Alexandre B. (2008) “Introduction to Nonparametric Estimation” Springer.—Tools for obtaining lower bounds on estimators.
    6. B. Efron (2010) “Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction” Cambridge,.—A thought-provoking book.
  • Bayesian Statistics
    1. Gelman, A. et al. (2003). “Bayesian Data Analysis” Chapman & Hall/CRC.—About Bayesian.
    2. Robert, C. and Casella, G. (2005). “Monte Carlo Statistical Methods” Springer.—about Bayesian computation.
  • Probability Theory
    1. Grimmett, G. and Stirzaker, D. (2001). “Probability and Random Processes” Oxford.—Intermediate-level probability book.
    2. Pollard, D. (2001). “A User’s Guide to Measure Theoretic Probability” Cambridge.—More advanced level probability book.
    3. Durrett, R. (2005). “Probability: Theory and Examples” Duxbury.—Standard advanced probability book.
  • Optimization
    1. Bertsimas, D. and Tsitsiklis, J. (1997). “Introduction to Linear Optimization” Athena.—A good starting book on linear optimization that will prepare you for convex optimization.
    2. Boyd, S. and Vandenberghe, L. (2004). “Convex Optimization” Cambridge.
    3. Y. Nesterov and Iu E. Nesterov (2003). “Introductory Lectures on Convex Optimization” Springer.—A start to understand lower bounds in optimization.
  • Linear Algebra
    1. Golub, G., and Van Loan, C. (1996). “Matrix Computations” Johns Hopkins.—Getting a full understanding of algorithmic linear algebra is also important.
  • Information Theory
    1. Cover, T. and Thomas, J. “Elements of Information Theory” Wiley.—Classic information theory.
  • Functional Analysis
    1. Kreyszig, E. (1989). “Introductory Functional Analysis with Applications” Wiley.—Functional analysis is essentially linear algebra in infinite dimensions, and it’s necessary for kernel methods, for nonparametric Bayesian methods, and for various other topics.

Remarks from Professor Jordan: “not only do I think that you should eventually read all of these books (or some similar list that reflects your own view of foundations), but I think that you should read all of them three times—the first time you barely understand, the second time you start to get it, and the third time it all seems obvious.”


### 配置和使用 `setupwizard.SUGGESTED_ACTIONS` `setupwizard.SUGGESTED_ACTIONS` 是 Android 设备首次设置向导中的一个重要组件,用于指导用户完成一系列推荐的操作。为了正确配置和使用此功能,需遵循特定的方法。 #### 1. 添加依赖项 首先,在项目的 `build.gradle` 文件中添加必要的依赖项: ```gradle dependencies { implementation 'com.google.android.setupcompat:setupcompat:2.0.0' } ``` 这一步骤确保项目能够访问 Setup Wizard 库所提供的 API 和资源[^1]。 #### 2. 创建建议操作列表 定义一个包含多个动作的对象数组,每个对象代表一项具体的行动指南。例如: ```java List<SuggestedAction> actions = new ArrayList<>(); actions.add(new SuggestedAction.Builder() .setTitle(R.string.action_title_1) .setDescription(R.string.action_description_1) .setIntent(Intent.createChooser( new Intent(Intent.ACTION_VIEW, Uri.parse("http://example.com")), null)) .build()); // 可继续添加更多action... ``` 此处通过构建器模式来创建每一个 `SuggestedAction` 实例,并指定其标题、描述以及点击后的跳转链接等属性。 #### 3. 显示建议操作界面 利用 `SetupWizardLayout` 或其他合适的布局容器展示上述准备好的动作列表给最终用户查看并交互: ```xml <com.google.android.setupdesign.TemplateLayout xmlns:android="http://schemas.android.com/apk/res/android" android:id="@+id/template_layout" ...> <!-- Other views --> </com.google.android.setupdesign.TemplateLayout> ``` 接着可以在 Activity 中初始化该视图并将之前构造的动作传递进去: ```java TemplateLayout templateLayout = findViewById(R.id.template_layout); templateLayout.setTitle(getString(R.string.suggested_actions_title)); templateLayout.setActions(actions.toArray(new SuggestedAction[0])); ``` 这样就完成了基本的显示逻辑实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值