神经网络算法中,参数的设置或者调整,有什么方法可以采用
若果对你有帮助,请点赞。神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。
现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。
然后将它更新为新的解,再继续寻找下一步的移动方向的步长,这样不断的迭代下去,目标函数(神经网络中的预测误差)也不断下降,最终就能找到一个解,使得目标函数(预测误差)比较小。
而在寻解过程中,步长太大,就会搜索得不仔细,可能跨过了优秀的解,而步长太小,又会使寻解过程进行得太慢。因此,步长设置适当非常重要。
学习率对原步长(在梯度下降法中就是梯度的长度)作调整,如果学习率lr=0.1,那么梯度下降法中每次调整的步长就是0.1*梯度,而在matlab神经网络工具箱里的lr,代表的是初始学习率。
因为matlab工具箱为了在寻解不同阶段更智能的选择合适的步长,使用的是可变学习率,它会根据上一次解的调整对目标函数带来的效果来对学习率作调整,再根据学习率决定步长。
机制如下:ifnewE2/E2>maxE_inc%若果误差上升大于阈值lr=lr*lr_dec;%则降低学习率elseifnewE2
祝学习愉快。
谷歌人工智能写作项目:神经网络伪原创
前向神经网络共有多少可以调节的参数
卷积神经网络是如何反向调整参数的?
如何选择神经网络的超参数
1、神经网络算法隐含层的选取1.1构造法首先运用三种确定隐含层层数的方法得到三个隐含层层数,找到最小值和最大值,然后从最小值开始逐个验证模型预测误差,直到达到最大值。
最后选取模型误差最小的那个隐含层层数。该方法适用于双隐含层网络。1.2删除法单隐含层网络非线性映射能力较弱,相同问题,为达到预定映射关系,隐层节点要多一些,以增加网络的可调参数,故适合运用删除法。
1.3黄金分割法算法的主要思想:首先在[a,b]内寻找理想的隐含层节点数,这样就充分保证了网络的逼近能力和泛化能力。
为满足高精度逼近的要求,再按照黄金分割原理拓展搜索区间,即得到区间[b,c](其中b=0.619*(c-a)+a),在区间[b,c]中搜索最优,则得到逼近能力更强的隐含层节点数,在实际应用根据要求,从中选取其一即可。
神经网络weight参数怎么初始化
不一定,也可设置为[-1,1]之间。事实上,必须要有权值为负数,不然只有激活神经元,没有抑制的也不行。至于为什么在[-1,1]之间就足够了,这是因为归一化和Sigmoid函数输出区间限制这两个原因。
一般在编程时,设置一个矩阵为bounds=ones(S,1)*[-1,1];%权值上下界。在MATLAB中,可以直接使用net=init(net);来初始化。
我们可以通过设定网络参数net.initFcn和net.layer{i}.initFcn这一技巧来初始化一个给定的网络。net.initFcn用来决定整个网络的初始化函数。
前馈网络的缺省值为initlay,它允许每一层用单独的初始化函数。设定了net.initFcn,那么参数net.layer{i}.initFcn也要设定用来决定每一层的初始化函数。
对前馈网络来说,有两种不同的初始化方式经常被用到:initwb和initnw。
initwb函数根据每一层自己的初始化参数(net.inputWeights{i,j}.initFcn)初始化权重矩阵和偏置。前馈网络的初始化权重通常设为rands,它使权重在-1到1之间随机取值。
这种方式经常用在转换函数是线性函数时。initnw通常用于转换函数是曲线函数。
它根据Nguyen和Widrow[NgWi90]为层产生初始权重和偏置值,使得每层神经元的活动区域能大致平坦的分布在输入空间。
bp神经网络遇到新的数据,就预测不准,怎么弄?
预测数据的话BP不是特别好用,最好用Elman反馈神经网络或者RNN循环神经网络,这些有记忆功能的网络比较好用。bp主要和你选择的隐含层数,和误差范围,学习率有关。
你可以调节相关参数来改变神经网络,获得更精确的结果。
BP人工神经网络方法
(一)方法原理人工神经网络是由大量的类似人脑神经元的简单处理单元广泛地相互连接而成的复杂的网络系统。理论和实践表明,在信息处理方面,神经网络方法比传统模式识别方法更具有优势。
人工神经元是神经网络的基本处理单元,其接收的信息为x1,x2,…,xn,而ωij表示第i个神经元到第j个神经元的连接强度或称权重。
神经元的输入是接收信息X=(x1,x2,…,xn)与权重W={ωij}的点积,将输入与设定的某一阈值作比较,再经过某种神经元激活函数f的作用,便得到该神经元的输出Oi。
常见的激活函数为Sigmoid型。
人工神经元的输入与输出的关系为地球物理勘探概论式中:xi为第i个输入元素,即n维输入矢量X的第i个分量;ωi为第i个输入与处理单元间的互联权重;θ为处理单元的内部阈值;y为处理单元的输出。
常用的人工神经网络是BP网络,它由输入层、隐含层和输出层三部分组成。BP算法是一种有监督的模式识别方法,包括学习和识别两部分,其中学习过程又可分为正向传播和反向传播两部分。
正向传播开始时,对所有的连接权值置随机数作为初值,选取模式集的任一模式作为输入,转向隐含层处理,并在输出层得到该模式对应的输出值。每一层神经元状态只影响下一层神经元状态。
此时,输出值一般与期望值存在较大的误差,需要通过误差反向传递过程,计算模式的各层神经元权值的变化量。这个过程不断重复,直至完成对该模式集所有模式的计算,产生这一轮训练值的变化量Δωij。
在修正网络中各种神经元的权值后,网络重新按照正向传播方式得到输出。实际输出值与期望值之间的误差可以导致新一轮的权值修正。正向传播与反向传播过程循环往复,直到网络收敛,得到网络收敛后的互联权值和阈值。
(二)BP神经网络计算步骤(1)初始化连接权值和阈值为一小的随机值,即W(0)=任意值,θ(0)=任意值。(2)输入一个样本X。
(3)正向传播,计算实际输出,即根据输入样本值、互联权值和阈值,计算样本的实际输出。
其中输入层的输出等于输入样本值,隐含层和输出层的输入为地球物理勘探概论输出为地球物理勘探概论式中:f为阈值逻辑函数,一般取Sigmoid函数,即地球物理勘探概论式中:θj表示阈值或偏置;θ0的作用是调节Sigmoid函数的形状。
较小的θ0将使Sigmoid函数逼近于阈值逻辑单元的特征,较大的θ0将导致Sigmoid函数变平缓,一般取θ0=1。
(4)计算实际输出与理想输出的误差地球物理勘探概论式中:tpk为理想输出;Opk为实际输出;p为样本号;k为输出节点号。
(5)误差反向传播,修改权值地球物理勘探概论式中:地球物理勘探概论地球物理勘探概论(6)判断收敛。若误差小于给定值,则结束,否则转向步骤(2)。
(三)塔北雅克拉地区BP神经网络预测实例以塔北雅克拉地区S4井为已知样本,取氧化还原电位,放射性元素Rn、Th、Tc、U、K和地震反射构造面等7个特征为识别的依据。
构造面反映了局部构造的起伏变化,其局部隆起部位应是油气运移和富集的有利部位,它可以作为判断含油气性的诸种因素之一。
在该地区投入了高精度重磁、土壤微磁、频谱激电等多种方法,一些参数未入选为判别的特征参数,是因为某些参数是相关的。
在使用神经网络方法判别之前,还采用K-L变换(Karhaem-Loeve)来分析和提取特征。S4井位于测区西南部5线25点,是区内唯一已知井。
该井在5390.6m的侏罗系地层获得40.6m厚的油气层,在5482m深的震旦系地层中获58m厚的油气层。
取S4井周围9个点,即4~6线的23~25点作为已知油气的训练样本;由于区内没有未见油的钻井,只好根据地质资料分析,选取14~16线的55~57点作为非油气的训练样本。
BP网络学习迭代17174次,总误差为0.0001,学习效果相当满意。以学习后的网络进行识别,得出结果如图6-2-4所示。
图6-2-4塔北雅克拉地区BP神经网络聚类结果(据刘天佑等,1997)由图6-2-4可见,由预测值大于0.9可得5个大封闭圈远景区,其中测区南部①号远景区对应着已知油井S4井;②、③号油气远景区位于地震勘探所查明的托库1、2号构造,该两个构造位于沙雅隆起的东段,其西段即为1984年钻遇高产油气流的Sch2井,应是含油气性好的远景区;④、⑤号远景区位于大涝坝构造,是yh油田的组成部分。