人工神经网络的读后感
这个读后感,不就是笔记吗把人工神经网络的概念、发展历程,使用范围,目前研究的深度介绍一下就好了。
人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionistModel),它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。
谷歌人工智能写作项目:神经网络伪原创
简述人工神经网络受到哪些生物神经网络的启发
人工神经网络最初是为了尝试利用人脑的架构来执行传统算法几乎没有成功的任务文案狗。对人类中枢神经系统的观察启发了人工神经网络这个概念。
在人工神经网络中,简单的人工节点,称作神经元(neurons),连接在一起形成一个类似生物神经网络的网状结构。
人工神经 网络基于一组称为人工神经元的连接单元或节点,它们对生物大脑中的神经元进行松散建模。每个连接,就像生物大脑中的突触一样,可以向其他神经元传输信号。
人工神经元接收信号然后对其进行处理,并可以向与其相连的神经元发送信号。连接处的“信号”是一个实数,每个神经元的输出由其输入总和的某个非线性函数计算。连接称为边。
神经元和边缘通常具有权重随着学习的进行而调整。权重会增加或减少连接处的信号强度。神经元可能有一个阈值,这样只有当聚合信号超过该阈值时才会发送信号。通常,神经元聚合成层。
不同的层可以对其输入执行不同的转换。信号从第一层(输入层)传输到最后一层(输出层),可能在多次遍历层之后。
现代神经网络是一种非线性统计性数据建模工具,神经网络通常是通过一个基于数学统计学类型的学习方法(LearningMethod)得以优化,所以也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间;另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。
和其他机器学习方法一样,神经网络已经被用于解决各种各样的问题,例如机器视觉和语音识别。这些问题都是很难被传统基于规则的编程所解决的。
构成1、结构(Architecture)结构指定了网络中的变量和它们