文章目录 1. 损失函数概念 2. 交叉熵损失函数 3. NLL/BCE/BCEWITHLogits Loss 1. 损失函数概念 损失函数:衡量模型输出与真实标签的差异 损失函数(Loss Function): L o s s = f ( y ^ , y ) Loss = f(\hat{y}, y) Loss=f(y^,y) 代价函数(Cost Function): L o s s = 1 N ∑ i N f ( y i ^ , y i ) Loss = \frac{1}{N}\sum^{N}_{i} f(\hat{y_i}, y_i) Loss=N1