概述
动物姿态的自动捕捉正在改变研究神经科学和社会行为的方式。运动携带着重要的社会线索,但是现有的方法不能很好地估计动物的姿态和形状,特别是鸟类,会受到环境中的物体遮挡。为了解决这个问题,作者首先引入了一种模型和多视图优化方法,来捕捉鸟类独特的形状和姿势空间。然后介绍了一种用于从单视图准确恢复鸟类姿势的方法,还包括鸟类的关键点、mask和外形。最后提供了一个包含大量多视图关键点和mask注释的鸟类数据集,可以从上面的项目链接中找到。
简介
1、为什么计算动物行为学?行为的准确测量对于神经科学、生物力学、人类健康和农业至关重要。通过自动测量,计算行为学旨在捕捉姿势、方向和位置方面的复杂变化,其中姿势包含丰富的信息,我们可以从中提取出更多与大脑功能、生物力学和健康相关的抽象特征,同时在自然社会行为下研究神经功能是深入理解大脑如何整合感知、认知、学习和记忆来产生行为的关键一步。
视觉信号传达了鸟类重要的社交信息
2.为什么鸟类的姿势很重要?为什么是燕八哥?了解社会群体的集体行为是如何从个体互动中产生的,对于研究社会行为背后的社会性进化和神经机制非常重要的。虽然声音是鸟类交流的重要渠道,但是姿势、方向和位置的变化也在交流中扮演着十分重要的作用。从行为学和神经科学的角度来看,最好的研究群体之一是褐头燕八哥。在燕八鸟中,雌性通过一系列视觉机制影响雄性的行为,例如“翼击(wingstrokes)”,这包括随着时间的推移姿势和形
该博客介绍了针对鸟类的3D姿态和形状重建技术,包括一种多视图优化方法来捕捉鸟类独特形状和姿势,以及使用神经网络从单视图数据恢复鸟类关键点、mask和外形。此外,作者还提供了一个包含多视图关键点和mask注释的大型鸟类数据集,以推动相关研究。
订阅专栏 解锁全文
469

被折叠的 条评论
为什么被折叠?



