Caffe 作者贾扬清:我为什么离开 Google,加入 Facebook?

Caffe作者贾扬清分享了他在Google的工作经验及为何选择加入Facebook。他还详细介绍了Caffe的发展历程、特点及其在不同领域的应用,并对未来发展趋势进行了展望。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://www.zhihu.com/question/27982282/answer/80242005  Caffe代码怎么读


Caffe 作者贾扬清:我为什么离开 Google,加入 Facebook?

在 Google Scholar 上,贾扬清被引用最多的三篇文章:


1.Caffe: Convolutional architecture for fast feature embedding(引用1201次)

2.Going deeper with convolutions(引用660次)

3.Decaf: A deep convolutional activation feature for generic visual recognition(引用562次)


在研究工作上,贾扬清之前的工作中,可公开的是:


How Google Translate squeezes deep learning onto a phone。


当然,他也是 Google TensorFlow 的作者之一。

贾扬清:Caffe最开始的确就是为了在我们平时科研上使用所写的,所以在伯克利我们所有涉及到Deep Learning的工作也都会基于Caffe来进行。我在Google也同时会使用Google Brain的大规模的机器学习框架DistBelief(参见Google在NIPS 2012的文章),但是我会经常使用Caffe来做一些快速的prototype和实验,因为Caffe有着更小的系统框架,使得一些探索性的实验更加容易一些。值得一提的是,Google的研究人员经常会使用各种自己熟悉的开源框架来进行小规模的研究,然后用DistBelief来作为一个通用的框架实现大规模产品级别的部署。


我觉得我们在CVPR 2015上的tutorial基本上概括了Caffe最近或者正在增加的特性:http://tutorial.caffe.berkeleyvision.org/。当然,我们一如既往地公开了所有的细节,包括源程序和训练好的模型。目前我个人除了科研以外主要在做的是两方面的内容,一方面是继续开源Google最近在Deep Learning上的科研成果(比如说我参与的GoogLeNet),另一方面是重新设计Caffe的一些结构,使得它更模块化,更容易在各种环境下部署。

Caffe一开始主要是为了图像领域的应用所设计的,所以在非图像的问题,比如说一般的机器学习、语音识别等问题上,Caffe的框架并不一定是最优的。举个例子,我们最近对于Caffe的数据结构做了一些修改,但是那之前Caffe的数据都需要强制定义成四维的Tensor:显然,在很多应用当中这是不够灵活的。根据我们从开发者社区得到的反馈,在很多非图像的应用领域,包括语音、自然语言处理、金融数据处理等等,其实也有很多人在使用Caffe。我们最近也在继续修改Caffe的框架,希望在不同领域的应用能够更加方便。


关于模型在不同框架之间转化的问题,我觉得我的回答是“与其用多个框架,不如优化一个框架” - 客观地说,Caffe在通用性和可移植性上比其他的框架(比如说基于Python的Theano和基于Lua的Torch)要灵活很多。Caffe的社区里面也有爱好者提供不同框架之间的转换代码,如果的确需要的话,可以搜索一下。


《程序员》:业界已经有人尝试深度学习在智能设备上的应用,芯片厂商在研究嵌入式视觉SoC,您自己也尝试过Raspberry Pi和Jetson,您如何看待嵌入式系统深度学习的趋势?在这方面Caffe还能够做些什么?


贾扬清:嵌入式的深度学习应该是一个大的趋势 - 就像百度IDL的创始人余凯博士说的一样,“世界终归是属于做机器人的人”。从广义上来说,各种智能设备都可以归为机器人的范畴。目前而言深度学习的大部分算法还是基于云端的计算,但是随着最近几年计算能力飞速提高,很多算法已经可以在嵌入式芯片(比如说NVIDIA的Tegra K1)上实时地运行了。想象一下,如果我们身边的每一个设备,从汽车到冰箱都是智能的,这该是多么美好的一件事情!这样的想法其实很早以前就有了(我记得我读初中的时候就听说过微软的智能家居的计划),但是我觉得现在我们站在一个技术的拐点上,也许可以真正实现以前的这些梦想。


从一定意义上说,希望深度学习在所有平台上都可以运行,这也是我最开始写Caffe的希望,也是为什么我选了C++而不是其他的语言。我目前正在修改一些Caffe的架构,希望能够更加容易地实现模块化的设计:核心Caffe代码是最小化和完全可移植的,然后可以根据需求来增加各种其他的模块。希望这样一来,Caffe的应用都能很高效地自定义到各种平台上面。


《程序员》:最后,请谈谈您对Caffe在深度学习领域的未来有什么期待?


贾扬清:用一句话来说,我希望Caffe能够成为机器学习和深度学习领域的Hadoop:人人了解,人人使用,人人获益。目前而言,深度学习领域的发展日新月异,各种框架发展非常迅猛,但是一定程度上也导致很多具体实现的碎片化。我个人的希望是通过不断改进Caffe本身的框架、代码、优化和周边各种支持,将Caffe变成一个业界标准的框架,提供一个相对普适的平台,让大家能更好地交流科研的成果,以及更快地将这些成果转化到实际的应用中去。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值