Farthest Nodes in a Tree

本文介绍了一道算法题目:在一个带权无向树中找到距离最远的两个节点,并给出了详细的输入输出样例及C++实现代码。
Farthest Nodes in a Tree
Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Description

Given a tree (a connected graph with no cycles), you have to find the farthest nodes in the tree. The edges of the tree are weighted and undirected. That means you have to find two nodes in the tree whose distance is maximum amongst all nodes.

Input

Input starts with an integer T (≤ 10), denoting the number of test cases.

Each case starts with an integer n (2 ≤ n ≤ 30000) denoting the total number of nodes in the tree. The nodes are numbered from 0 to n-1. Each of the next n-1 lines will contain three integers u v w (0 ≤ u, v < n, u ≠ v, 1 ≤ w ≤ 10000) denoting that node u and v are connected by an edge whose weight is w. You can assume that the input will form a valid tree.

Output

For each case, print the case number and the maximum distance.

Sample Input

2

4

0 1 20

1 2 30

2 3 50

5

0 2 20

2 1 10

0 3 29

0 4 50

Sample Output

Case 1: 100

Case 2: 80

怎么说呢,注意数组,别再开小了。。不然又是Runtime Error!!大致上跟Cow Marathon题一样。

#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define MAXN 60000+10
using namespace std;
struct Edge {
    int from, to, val, next;
}edge[MAXN * 2];
int head[MAXN];
int edgenum;
void init(){
	memset(head, -1, sizeof(head)); 
	edgenum = 0; 
}
void addEdge(int u, int v, int w) {
    Edge E = {u,v,w,head[u]};
    edge[edgenum]=E;
    head[u] = edgenum++;
}
int ans;
int Tnode;
int dist[MAXN];
bool vis[MAXN];
int n;
void BFS(int s) {
    memset(dist, 0, sizeof(dist)); 
	memset(vis, false, sizeof(vis));
    queue<int> Q; 
	Q.push(s); 
	vis[s] = true; 
	dist[s] = 0; ans = 0;
    while(!Q.empty()) {
        int u = Q.front(); 
		Q.pop();
        for(int i = head[u]; i != -1; i = edge[i].next) {
            int v = edge[i].to;
            if(!vis[v]&&dist[v] < dist[u] + edge[i].val) {
                vis[v] = true;
                dist[v] = dist[u] + edge[i].val;
                if(dist[v] > ans) {
            		ans = dist[v];
            		Tnode = v;
        		}
                Q.push(v);
            }
        }
    }
}
int main(){
	int t,a,b,c,count=1;
	scanf("%d",&t);
	while(t--){
		scanf("%d",&n);
		init();
		for(int i=1;i<n;i++){
			scanf("%d%d%d",&a,&b,&c);
			a++;b++;
			addEdge(a,b,c);
			addEdge(b,a,c);
		}
		BFS(1);
		BFS(Tnode);
		printf("Case %d: %d\n",count++,ans);
	}
}

from collections import defaultdict, deque import sys def build_graph(file_path): """从文件构建无向图""" graph = defaultdict(list) nodes = set() with open(file_path, 'r') as f: for line in f: line = line.strip() if not line or '-' not in line: continue a, b = line.split('-', 1) # 只分割第一个'-' a, b = a.strip(), b.strip() if a and b: graph[a].append(b) graph[b].append(a) nodes.add(a) nodes.add(b) return graph, nodes def break_cycles(graph, nodes): """断开图中所有环,返回生成森林""" visited = set() parent = {} forest = defaultdict(list) # 存储生成森林 for node in nodes: if node not in visited: stack = [node] visited.add(node) parent[node] = None while stack: cur = stack.pop() for neighbor in graph[cur]: # 忽略父节点 if neighbor == parent[cur]: continue # 遇到已访问节点(回边),跳过添加 if neighbor in visited: continue # 添加树边到森林 visited.add(neighbor) parent[neighbor] = cur forest[cur].append(neighbor) forest[neighbor].append(cur) stack.append(neighbor) return forest def find_tree_diameter(component, forest): """计算树的直径和路径""" def bfs(start): dist = {} pred = {} q = deque([start]) dist[start] = 0 pred[start] = None farthest_node = start while q: cur = q.popleft() for neighbor in forest[cur]: if neighbor not in dist: dist[neighbor] = dist[cur] + 1 pred[neighbor] = cur q.append(neighbor) if dist[neighbor] > dist[farthest_node]: farthest_node = neighbor return farthest_node, dist, pred # 第一次BFS找最远端点 start = next(iter(component)) u, dist_u, _ = bfs(start) # 第二次BFS找直径 v, dist_v, pred = bfs(u) # 重建路径 path = [] cur = v while cur is not None: path.append(cur) cur = pred.get(cur, None) return len(path), path # 返回节点数和路径 def find_connected_components(forest, nodes): """在生成森林中找连通分量""" visited = set() components = [] for node in nodes: if node not in visited: comp = set() stack = [node] visited.add(node) while stack: cur = stack.pop() comp.add(cur) for neighbor in forest[cur]: if neighbor not in visited: visited.add(neighbor) stack.append(neighbor) components.append(comp) return components def main(file_path): # 1. 构建原始图 graph, all_nodes = build_graph(file_path) # 2. 断开所有环得到生成森林 forest = break_cycles(graph, all_nodes) # 3. 获取连通分量(树) components = find_connected_components(forest, all_nodes) # 4. 计算每棵树的直径 max_chain_length = 0 max_chain_path = [] for comp in components: if not comp: continue length, path = find_tree_diameter(comp, forest) if length > max_chain_length: max_chain_length = length max_chain_path = path # 5. 输出结果 print(f"最长链长度(节点数): {max_chain_length}") print(f"最长链路径: {' -> '.join(max_chain_path)}") if __name__ == "__main__": if len(sys.argv) != 2: print("G:\研究生\分子对应\99999.txt") sys.exit(1) main(sys.argv[1]) 咋输入这个文件地址啊
12-12
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值