地平线 bev 参考算法板端一致性验证教程

01 前言

由于部署时数据来源的硬件不同以及应用开发的高效性要求,往往会使得在板端部署阶段的数据准备操作与训练时有所差异,导致在同样的输入下,量化模型的输出结果和板端部署模型的输出结果不一致。

本文将基于开发者社区中已经发布的地平线 bev 参考算法板端输入数据准备教程,以 bev_mt_lss 参考算法为例,介绍 PC 端和板端输出一致性验证的过程。

02 PC 端输入获取

PC 端输入的获取主要包括输入数据准备、输出节点配置和运行推理脚本这三个步骤,下面将对其进行逐一介绍。

2.1 输入数据准备

bev_mt_lss 参考算法的 PC 端输入为:

图片

获取到 6V 图像和 homography 矩阵后,配置 config 文件的 infer_cfg 字段中输入路径参数 infer_inputs:

infer_cfg = dict(
    model=model,
    infer_inputs=dict(
        #6V图像的存放路径
        imagedir="./tmp_orig_data/nuscenes/infer_imgs/single_frame/imgs",
        #homography矩阵的存放路径
        homo="./tmp_orig_data/nuscenes/infer_imgs/single_frame/homo/ego2img.npy",
    ),
    ...
)

bev 参考算法的输入的 6V 图像的有顺序的,所以需要在 config 文件的 process_inputs 函数中定义输入图像的顺序,如下所示:

def process_inputs(infer_inputs, transforms=None):
​
    resize_size = resize_shape[1:]
    input_size = val_data_shape[1:]
    ori
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值