Flink 内容分享(一):Fink原理、实战与性能优化(一)_flink原理、实战与性能优化

Hadoop是一个开源的分布式存储和计算框架,最初由Apache开发,用于处理大规模数据集。Hadoop的核心组件包括:

  1. Hadoop Distributed File System(HDFS): HDFS是一种分布式文件系统,用于存储大规模数据。它将数据分成多个块,并将这些块分散存储在集群中的不同节点上。HDFS支持高可靠性、冗余存储和数据复制。
  2. MapReduce: MapReduce是Hadoop的计算模型,用于处理分布式数据。它将计算任务分成Map和Reduce两个阶段,分布在集群中的节点上并行执行。Map阶段负责数据的拆分和处理,Reduce阶段负责数据的汇总和计算。
YARN (Yet Another Resource Negotiator)

YARN是Hadoop的资源管理器,它负责集群资源的管理和分配。YARN将集群资源划分为容器(Containers),并分配给不同的应用程序。这种资源的隔离和管理允许多个应用程序同时在同一个Hadoop集群上运行,从而提高了资源利用率和集群的多租户能力。

Spark:

Apache Spark是一个通用的分布式计算引擎,旨在提供高性能、易用性和多功能性。与传统的Hadoop MapReduce相比,Spark具有更快的执行速度,因为它将数据加载到内存中并进行内存计算。Spark支持多种计算模式,包括批处理、交互式查询、流处理和机器学习。

Spark的主要特点和组件包括:

  1. RDD(Resilient Distributed Dataset): RDD是Spark的核心数据抽象,表示分布式的数据集。RDD支持并行操作和容错性,可以在计算过程中重新计算丢失的分区。
  2. Spark SQL: Spark SQL是用于处理结构化数据的组件,支持SQL查询和操作。它能够将RDD和传统的数据源(如Hive)无缝集成。
  3. Spark Streaming: Spark Streaming是用于处理实时流数据的模块,支持微批处理模式。它能够将实时数据流分割成小批次并进行处理。
  4. MLlib: MLlib是Spark的机器学习库,提供了常见的机器学习算法和工具,用于训练和评估模型。
  5. GraphX: GraphX是Spark的图计算库,用于处理图数据和图算法。
Flink:

Apache Flink是一个流式处理引擎和分布式批处理框架,具有低延迟、高吞吐量和容错性。Flink支持流批一体化,能够实现实时流处理和批处理作业的无缝切换。它的核心特点包括:

  1. DataStream API: Flink的DataStream API用于处理实时流数据,支持事件时间处理、窗口操作和状态管理。它能够处理高吞吐量的实时数据流。
  2. DataSet API: Flink的DataSet API用于批处理作业,类似于Hadoop的MapReduce。它支持丰富的操作符和优化技术。
  3. Stateful Stream Processing: Flink支持有状态的流式处理,可以在处理过程中保存和管理状态。这对于实现复杂的数据处理逻辑很有用。
  4. Event Time Processing: Flink支持事件时间处理,能够处理乱序事件并准确计算窗口操作的结果。
  5. Table API和SQL: Flink提供了Table API和SQL查询,使开发人员可以使用类似SQL的语法来查询和分析数据。
  6. 可以连接大数据生态圈各类组件,包括Kafka、Elasticsearch、JDBC、HDFS和Amazon S3
  7. 可以运行在Kubernetes、YARN、Mesos和独立(Standalone)集群上。

Flink在流处理上的几个主要优势如下:

  1. 真正的流计算引擎:Flink具有更好的streaming计算模型,可以进行非常高效的状态运算和窗口操作。Spark Streaming仍然是微批处理引擎。
  2. 更低延迟:Flink可以实现毫秒级的低延迟处理,而Spark Streaming延迟较高。
  3. 更好的容错机制:Flink支持更细粒度的状态管理和检查点机制,可以实现精确一次的状态一致性语义。Spark较难做到确保exactly once。
  4. 支持有限数据流和无限数据流:Flink可处理有开始和结束的有限数据流,也能处理无限不断增长的数据流。Spark Streaming更适合有限数据集。
  5. 更易统一批处理和流处理:Flink提供了DataStream和DataSet API,可以轻松统一批处理和流处理。Spark需要联合Spark SQL使用。
  6. 更优秀的内存管理:Flink具有自己的内存管理,可以根据不同查询优化内存使用。Spark依赖Hadoop YARN进行资源调度。
  7. 更高性能:在部分场景下,Flink拥有比Spark Streaming更高的吞吐和低的延迟。

总体来说,Flink作为新一代流处理引擎,在延迟、容错、易用性方面优于Spark Streaming。但Spark生态更加完善,也在努力减小与Flink的差距。需要根据具体场景选择最优的框架。

总的来说,Flink在流处理领域的优势主要体现在事件时间处理、低延迟、精确一次语义和状态管理等方面。这些特性使得Flink在处理实时流数据时能够更好地满足复杂的业务需求,特别是对于需要高准确性和可靠性的应用场景。

Flink 部署

Apache Flink在1.7版本中进行了重大的架构重构,引入了Master-Worker架构,这使得Flink能够更好地适应不同的集群基础设施,包括Standalone、Hadoop YARN和Kubernetes等。下面会详细介绍一下Flink 1.7版本引入的Master-Worker架构以及其在不同集群基础设施中的适应性。

Master-Worker架构:

Flink 1.7版本中引入的Master-Worker架构是为了解决之前版本中存在的一些问题,如资源管理、高可用性等。在这个架构中,Flink将任务管理和资源管理分离,引入了JobManager和ResourceManager两个主要角色。

  • JobManager: 负责接受和调度任务,维护任务的状态和元数据信息,还负责处理容错机制。JobManager分为两种:JobManager(高可用模式)和StandaloneJobManager(非高可用模式)。
  • ResourceManager: 负责管理集群中的资源,包括分配任务的资源、维护资源池等。

这种架构的优势在于解耦任务的管理和资源的管理,使得Flink能够更好地适应不同的集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值