
Flink
Aegeaner
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Flink JOIN 执行计划
Flink JOIN 执行计划代码: val table1 = env.fromElements((1, "hello")).toTable(tEnv, 'a, 'b) val table2 = env.fromElements((1, "hello")).toTable(tEnv, 'c, 'd) val table = table1.join(table2).where("原创 2017-05-23 23:54:38 · 1799 阅读 · 0 评论 -
Flink Streaming cornerstones
摘自Flink-forward的一张幻灯片,也是衡量流计算平台的四个很好的基准和标尺。翻译 2017-04-25 22:33:12 · 512 阅读 · 0 评论 -
Flink AsyncIO特性测评
背景:Flink 1.2起,对流处理中耗时较高的外部IO操作进行了优化,引入了Async IO特性,将IO操作异步化,大幅提升了效率。 测试环境: Java HotSpot(TM) 64-Bit Server VM 1.8.0_112-b16 on Mac OS X 10.11.6 Intel(R) Core(TM) i5-5257U CPU @ 2.70GHz 测试基准:对原创 2017-06-12 14:25:09 · 1945 阅读 · 0 评论 -
No consensus in exactly-once
https://fpj.me/2017/07/04/no-consensus-in-exactly-once/ JULY 4, 2017 ~ FPJ Exactly-once semantics is an intriguing, controversial, and for me an exciting topic. I have been dealing with it转载 2017-07-05 12:37:59 · 832 阅读 · 0 评论 -
Peeking into Apache Flink's Engine Room
13 Mar 2015 by Fabian Hüske (@fhueske) Join Processing in Apache Flink Joins are prevalent operations in many data processing applications. Most data processing systems feature APIs that make jo转载 2017-06-14 11:38:37 · 844 阅读 · 0 评论 -
State in Flink and Rescaling Stateful Streaming Jobs
By Stefan Richter (@StefanRRichter) of data Artisans Now, it’s time for a deep-dive on application state in Flink. We’ll cover 5 topics in this section: An Intro to Stateful Stream Processin转载 2017-06-14 15:09:13 · 950 阅读 · 0 评论