Hanlp自然语言处理工具的使用演练

本文介绍了如何使用Hanlp工具包进行自然语言处理,包括分词、关键词提取、摘要提取、词库维护等操作,并提供了具体的方法签名和示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hanlp是由一系列模型与算法组成的工具包,目标是普及自然语言处理在生产环境中的应用。Hanlp具备功能完善、性能高效、架构清洗、语料时新、可自定义的特点;提供词法分析(中文分词、磁性标注、命名实体识别)、句法分析、文本分类和情感分析等功能。

本篇将用户输入的语句根据词库进行分词、关键词提取、摘要提取、词库维护。

 

工具类名称:DKNLPBase

 

1、标准分词

方法签名:List<Term> StandardTokenizer.segment(String txt);

返回:分词列表。

签名参数说明:txt:要分词的语句。

范例:下例验证一段话第5个分词是阿法狗。

程序清单1

 

public void testSegment() throws Exception

    {

        String text = "商品和服务";

        List<Term> termList = DKNLPBase.segment(text);

        assertEquals("商品", termList.get(0).word);

        assertEquals("和", termList.get(1).word);

        assertEquals("服务", termList.get(2).word);

        text = "柯杰解说“李世石VS阿法狗第二局” 结局竟是这样";

        termList = DKNLPBase.segment(text);

        assertEquals("阿法狗", termList.get(5).word);  // 能够识别"阿法狗"

}

 

2、关键词提取

方法签名:List<String>  extractKeyword(String txt,int keySum);

返回:关键词列表.

签名参数说明:txt:要提取关键词的语句,keySum要提取关键词的数量

范例:给出一段话提取一个关键词是“程序员”。

程序清单2

 

public void testExtractKeyword() throws Exception

    {

        String content = "程序员(英文Programmer)是从事程序开发、维护的专业人员。" +

                "一般将程序员分为程序设计人员和程序编码人员," +

                "但两者的界限并不非常清楚,特别是在中国。" +

       &nb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值