# -*- coding: utf-8 -*-
# @Time : 2020/1/21 23:04
# @Author : Fighter.Lu
list 集合
simple=["one","two","three"] #list集合存储数据
#print(len(simple)) #list集合数据个数
#print(simple[0]) #list集合中的第一个元素u
#print(simple[-1]) #list集合中最后一个元素
#simple.append('four') #list集合在尾部添加元素
#simple.insert('3','ten')
#simple.pop() #从尾部删除元素
#simple.pop(1) #从指定位置删除元素
#simple[3]='ten' 根据下标替换list集合中元素
#s=['one','two',['three','four'],'five',simple] #list集合插入另一个list集合
#print(s)
tuple 元组
#classmate=('one','two') #初始化元素
#print(classmate)
# classmates这个tuple不能变了,它也没有append(),insert()这样的方法。其他获取元素的方法和list是一样的,你可以正常地使用classmates[0],classmates[-1],但不能赋值成另外的元素。
#定义空元组
#student=()
#print(student)
#student=(1)
#student[0]='zhangsan'
#print(student)
# L = [
# ['Apple', 'Google', 'Microsoft'],
# ['Java', 'Python', 'Ruby', 'PHP'],
# ['Adam', 'Bart', 'Lisa']
# ]
# print(L[0][0])
# print(L[1][1])
# print(L[2][2]) BMI = 體重(公斤) / 身高2(厘米)
#用户输入
#s=input("请输入您的年龄:")
#字符串转整型
# s=int(s)
# if s>20:
# print("你是成年人")
# elif s<5:
# print(s)
# else:
# print()
#print(55/(1.67*1.67))
#for遍历
# for i in simple:
#
# print('集合:'+i)
# sum=0
#range 函数生成序列 range(4)=[0,1,2,3]
# for i in range(101):
# sum=sum+i;
# print(sum)
#dict 字典 类似于 map
scoreinfo={'zhangsan':11,'lisi':33,'wangwu':33}
#scoreinfo["zhaoliu"]=22 #如果key存在就修改 如果不存在就添加
#print(scoreinfo['zhangsan']) #查询某个key -value
#scoreinfo['zhangsan']=111 #修改字典scoreinfo中key为zhangsan的value
#print(scoreinfo['zhangsan'])
#print('zhangsan' in scoreinfo) #判断key在字典中是否存在
#通过dict提供的get方法判断key在集合中是否存在;不存在就返回none,否则返回value
#print(scoreinfo.get("zhangsan"))
#通过下标判断
#print(scoreinfo.get("lisi",-1))
#删除字典scoreinfo中key
#scoreinfo.pop("zhangsan")
#print(scoreinfo)
#list和字典dict区别
#1、dict查询和插入的速度很快,不会随着key增多而变慢;需要占用大量的内存,内存浪费严重
#2、list查询和插入随着集合的元素添加,速度变慢
set和dict很相似,也是一组key的集合,只存储key的集合,set不能重复key存在,如果有重复set会自动剔除
id=set([1,2,3])
print(id)
# id=set({1,11,2,3,2,3})
# print(id)
# {3, 1, 2, 11}
#set 无序集合
#set 添加元素
id.add(4)
print(id)
#如果id重复添加相同的key,不会有效果
# id
{3, 1, 2, 11}
# id.add(3)
# id
#{3, 1, 2, 11}
#id 删除key
#id.remove(3)
#>>> id
#{1, 2, 11}
#查询两个set集合重叠的元素
# id
# {1, 2, 11}
# >>> id1
# {3, 4, 5, 6, 7}
# >>> id &id1
# set()
# >>> id |id1
# {1, 2, 3, 4, 5, 6, 7, 11}
# >>>
#dict 和set区别
没有存储对应的value,但是,set的原理和dict一样,所以,同样不可以放入可变对象,因为无法判断两个可变对象是否相等,也就无法保证set内部“不会有重复元素”。试试把list放入set,看看是否会报错
函数
1、调用函数
1.1 取正数:abs(x) 注意:只能有一个参数,且参数只能是数字
1.2 取最大值:max(x,y,z) 可以多个参数,参数只能是数字
1.3 整型转化:int('222') 只能是数字类型的字符串 (int('222')、str(22))
>>> int('123')
123
>>> int(12.34)
12
>>> float('12.34')
12.34
>>> str(1.23)
'1.23'
>>> str(100)
'100'
>>> bool(1)
True
>>> bool('')
False
2、自定义函数
使用关键字:def
例如:
def my_abs(x):
if x >= 0:
return x
else:
return -x
调用函数:my_abs(-1) 结果:1
注意:函数中如果没有加返回值,显示none
3、空函数:当你暂时不知道写什么,可以在函数里面加入pass,这表示什么都不做
def show():
pass
注意:如果函数里面没东西,同时也没加pass,会报错
4、参数检查
调用函数时,如果参数个数不对,Python解释器会自动检查出来,并抛出TypeError:
>> my_abs(1, 2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: my_abs() takes 1 positional argument but 2 were given
参数类型不对:
def my_abs(x):
if not isinstance(x, (int, float)):
raise TypeError('bad operand type')
if x >= 0:
return x
else:
return -x
my_abs('A') :参数类型错误,就会出错误
>> my_abs('A')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in my_abs
TypeError: bad operand type
5、返回参数多个值
import math
def move(x, y, step, angle=0):
nx = x + step * math.cos(angle)
ny = y - step * math.sin(angle)
return nx, ny
r=move(100,100,60,math.pi/6)
print(r)
(151.96152422706632, 70.0)
原来返回值是一个tuple!但是,在语法上,返回一个tuple可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值,所以,Python的函数返回多值其实就是返回一个tuple,但写起来更方便。
请定义一个函数quadratic(a, b, c),接收3个参数,返回一元二次方程 ax^2+bx+c=0ax2+bx+c=0 的两个解。
def quadratic(a,b,c):
return (-b+math.sqrt(b*b-4*a*c))/2*a,(-b-math.sqrt(b*b-4*a*c))/2*a
6、函数的参数
6.1、位置参数:传入有且只有一个参数
计算x平方的函数
def power(x):
return x*x
power(2)
传入多个参数:立方、平方 x^2 x^3
def power(x,n):
s=1
while n>0:
n=n-1
s=s*x
return s
power(2,3)
6.2、默认参数:函数中有默认参数,传入的参数被函数中默认的参数代替
def power(x, n=2):
s = 1
while n > 0:
n = n - 1
s = s * x
return s
power(5) -->25
power(5,3) -->25
6.3、可变参数:参数可传入集合、元组
计算a^2+b^2+c^3
def calc(numbers):
sum = 0
for n in numbers:
sum = sum + n * n
return sum
>>> calc([1, 2, 3])
14
>>> calc((1, 3, 5, 7))
84
>>> calc(1, 2, 3)
14
>>> calc(1, 3, 5, 7)
84
定义可变参数和定义一个list或tuple参数相比,仅仅在参数前面加了一个*号。在函数内部,参数numbers接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数:
>>> calc(1, 2)
5
>>> calc()
0
如果已经有一个list或者tuple,要调用一个可变参数怎么办?可以这样做:
>>> nums = [1, 2, 3]
>>> calc(nums[0], nums[1], nums[2])
14
这种写法当然是可行的,问题是太繁琐,所以Python允许你在list或tuple前面加一个*号,把list或tuple的元素变成可变参数传进去:
>>> nums = [1, 2, 3]
>>> calc(*nums)
14
关键字参数
在对用户注册的过程中,在对参数个数的控制情况下,传入多个属性值,就会用到字典
示例1:
def person(name, age, **kw):
print('name:', name, 'age:', age, 'other:', kw)
>>> person('Michael', 30)
name: Michael age: 30 other: {}
>> person('Bob', 35, city='Beijing')
name: Bob age: 35 other: {'city': 'Beijing'}
>>> person('Adam', 45, gender='M', job='Engineer')
name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}
>>> extra = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, city=extra['city'], job=extra['job'])
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}
>>> extra = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, **extra)
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}
高级特性
- 切片:更好的取list、tuple、dict、set中数据
- 格式:[start : end : step]
Start:起始索引,从0开始,-1表示结束
End:结束索引
Step:步长
end-start=正数时,从左向右取值,=负数时反向取值
注意:切片结果不包含结束索引,即不包含最后一位,-1代表最后一个位置索引
-
常用的几种方式:
[:] 如:list2=list1[:] 全部截取
[0:1:n] 如:list1[0:3;1] 从0开始到3每次增加1截取,不包含索引结束位置
[0:-1:1]:从0开始到结束,每次增加1,截取不包含索引结束位置
[:3]:默认从起始位置索引,每次增加1截取,结束位置索引为3
[3:0:-1]反向取值,每次增加1截取,不包含索引结束位置
- 例如:
L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']
1、取list集合数据
1、1:没用切边取list集合数据
>>> [L[0], L[1], L[2]]
['Michael', 'Sarah', 'Tracy']
1.2、:使用切片取list集合数据
>>> L[0:3]
['Michael', 'Sarah', 'Tracy']
L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引0,1,2,正好是3个元
素。
如果第一个索引是0,还可以省略:
>>> L[:3]
['Michael', 'Sarah', 'Tracy']
也可以从索引1开始,取出2个元素出来:
>>> L[1:3]
['Sarah', 'Tracy']
类似的,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,试试:
>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']
记住倒数第一个元素的索引是-1。
切片操作十分有用。我们先创建一个0-99的数列:
>>> L = list(range(100))
>>> L
[0, 1, 2, 3, ..., 99]
可以通过切片轻松取出某一段数列。比如前10个数:
>>> L[:10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
后10个数:
>>> L[-10:]
[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]
前11-20个数:
>>> L[10:20]
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
前10个数,每两个取一个:
>>> L[:10:2]
[0, 2, 4, 6, 8]
所有数,每5个取一个:
>>> L[::5]
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]
甚至什么都不写,只写[:]就可以原样复制一个list:
>>> L[:]
[0, 1, 2, 3, ..., 99]
tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果 仍是tuple:
>>> (0, 1, 2, 3, 4, 5)[:3]
(0, 1, 2)
字符串'xxx'也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作, 只是操作结果仍是字符串:
>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[::2]
'ACEG'
- 案例:
利用切片操作,实现一个trim()函数,去除字符串首尾的空格,注意不要调用str的strip()方法:
def trim(s):
if s[:1] != ' ' and s[-1:] != ' ':
return s
elif s[:1] == ' ':
return trim(s[1:])
else:
return trim(s[:-1])
迭代
- 如果给定一个list或tuple,我们可以通过
for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。
使用迭代遍历list集合
for i in list:
print(i)
使用迭代遍历dict字典
>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
print(key)
a
c
b
使用迭代遍历字符串
>>> for ch in 'ABC':
print(ch)
A
B
C
判断对象是否是可迭代的对象
>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False
如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:
>>> for i, value in enumerate(['A', 'B', 'C']):
print(i, value)
0 A
1 B
2 C
上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
... print(x, y)
...
1 1
2 4
3 9
请使用迭代查找一个list中最小和最大值,并返回一个tuple:
def findMinAndMax(L):
max = L[0]
for i in L:
if i >max:
max=i
min=L[0]
for i in L:
if i<min:
min=i
return (max,min)
print(findMinAndMax([3,2,1,4,2,5,6,77,44]))
列表生成式
- 概念:即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。
- 实例:
要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11)):
>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
但如果要生成[1x1, 2x2, 3x3, ..., 10x10]
方法一是循环:
>>> L = []
>>> for x in range(1, 11):
... L.append(x * x)
...
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来
for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
还可以使用两层循环,可以生成全排列:
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
三层和三层以上的循环就很少用到了。
运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:
>>> import os # 导入os模块,模块的概念后面讲到
>>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录
['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 'Public', 'VirtualBox VMs', 'Workspace', 'XCode']
for循环其实可以同时使用两个甚至多个变量,比如dict的items()可以同时迭代key和value:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> for k, v in d.items():
... print(k, '=', v)
...
y = B
x = A
z = C
因此,列表生成式也可以使用两个变量来生成list:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C']
最后把一个list中所有的字符串变成小写:
>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']
如果list中既包含字符串,又包含整数,由于非字符串类型没有lower()方法,所以列表生成式会报错:
>>> [s.lower() for s in L if(isinstance(s,str))]
['hello', 'world', 'apple']
生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>
创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。
我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。
当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:
>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
...
0
1
4
9
16
25
36
49
64
81
所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。
generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done'
注意,赋值语句:
a, b = b, a + b
相当于:
t = (b, a + b) # t是一个tuple
a = t[0]
b = t[1]
但不必显式写出临时变量t就可以赋值。
上面的函数可以输出斐波那契数列的前N个数:
>>> fib(6)
1
1
2
3
5
8
'done'
仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'
这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:
for i in fib(3):
print(i)
这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
举个简单的例子,定义一个generator,依次返回数字1,3,5:
def odd():
print('step 1')
yield 1
print('step 2')
yield(3)
print('step 3')
yield(5)
for i in odd():
print(i)
调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:
>>> o = odd()
>>> next(o)
step 1
1
>>> next(o)
step 2
3
>>> next(o)
step 3
5
>>> next(o)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。
回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。
同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:
但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:
>> g = fib(6)
>>> while True:
... try:
... x = next(g)
... print('g:', x)
... except StopIteration as e:
... print('Generator return value:', e.value)
... break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done
案例:杨辉三角
n = 0
results = []
def triangle():
N = [1]
while True:
yield N #generator特点在于:在执行过程中,遇到yield就中断,下次又继续执行
N.append(0) #每次都要在最后一位加个0,用于后续的叠加
N = [N[i]+N[i-1] for i in range(len(N))]
for t in triangle():
results.append(t)
n = n + 1
if n == 10:
break
for t in results:
print(t)
迭代器
我们已经知道,可以直接作用于for循环的数据类型有以下几种:
- 一类是集合数据类型,如
list、tuple、dict、set、str等; - 一类是
generator,包括生成器和带yield的generator function。
这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。
可以使用isinstance()判断一个对象是否是Iterable对象:
>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False
而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。
可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。
可以使用isinstance()判断一个对象是否是Iterator对象:
>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False
生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。
把list、dict、str等Iterable变成Iterator可以使用iter()函数:
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True
你可能会问,为什么list、dict、str等数据类型不是Iterator?
这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
小结
凡是可作用于for循环的对象都是Iterable类型;
凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;
集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。
Python的for循环本质上就是通过不断调用next()函数实现的,例如:
for x in [1, 2, 3, 4, 5]:
pass
等价于:
# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
try:
# 获得下一个值:
x = next(it)
except StopIteration:
# 遇到StopIteration就退出循环
break
函数式编程
- 高阶函数
- map/reduce:MapReduce是一个基于集群的计算平台,是一个简化分布式编程的计算框架,是一个将分布式计算抽象为Map和Reduce两个阶段的编程模型。
我们先看map。map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。
举例说明,比如我们有一个函数f(x)=x2,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map()实现如下:
>>> def f(x):
... return x * x
...
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]
map()传入的第一个参数是f,即函数对象本身。由于结果r是一个Iterator,Iterator是惰性序列,因此通过list()函数让它把整个序列都计算出来并返回一个list。
你可能会想,不需要map()函数,写一个循环,也可以计算出结果:
L = []
for n in [1, 2, 3, 4, 5, 6, 7, 8, 9]:
L.append(f(n))
print(L)
的确可以,但是,从上面的循环代码,能一眼看明白“把f(x)作用在list的每一个元素并把结果生成一个新的list”吗?
所以,map()作为高阶函数,事实上它把运算规则抽象了,因此,我们不但可以计算简单的f(x)=x2,还可以计算任意复杂的函数,比如,把这个list所有数字转为字符串:
>>> list(map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
['1', '2', '3', '4', '5', '6', '7', '8', '9']
只需要一行代码。
再看reduce的用法。reduce把一个函数作用在一个序列[x1, x2, x3, ...]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
比方说对一个序列求和,就可以用reduce实现:
>>> from functools import reduce
>>> def add(x, y):
... return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25
当然求和运算可以直接用Python内建函数sum(),没必要动用reduce。
但是如果要把序列[1, 3, 5, 7, 9]变换成整数13579,reduce就可以派上用场:
>>> from functools import reduce
>>> def fn(x, y):
... return x * 10 + y
...
>>> reduce(fn, [1, 3, 5, 7, 9])
13579
这个例子本身没多大用处,但是,如果考虑到字符串str也是一个序列,对上面的例子稍加改动,配合map(),我们就可以写出把str转换为int的函数:
>>> from functools import reduce
>>> def fn(x, y):
... return x * 10 + y
...
>>> def char2num(s):
... digits = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}
... return digits[s]
...
>>> reduce(fn, map(char2num, '13579'))
13579
整理成一个str2int的函数就是:
from functools import reduce
DIGITS = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}
def str2int(s):
def fn(x, y):
return x * 10 + y
def char2num(s):
return DIGITS[s]
return reduce(fn, map(char2num, s))
还可以用lambda函数进一步简化成:
from functools import reduce
DIGITS = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}
def char2num(s):
return DIGITS[s]
def str2int(s):
return reduce(lambda x, y: x * 10 + y, map(char2num, s))
案例:
Python提供的sum()函数可以接受一个list并求和,请编写一个prod()函数,可以接受一个list并利用reduce()求积:
>>> def fn(x,y):
... return x*y
...
>>> from functools import reduce
>>> reduce(fn,map([1,3,5,9]))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: map() must have at least two arguments.
>>> reduce(fn,[1,3,5,9])
135
>>>
利用map()函数,把用户输入的不规范的英文名字,变为首字母大写,其他小写的规范名字。输入:['adam', 'LISA', 'barT'],输出:['Adam', 'Lisa', 'Bart']:
def UpperToLower(L):
L=L[0].upper()+L[1:].lower()
return L
L=["one","TWO"]
print(list(map(UpperToLower,L)))
2、filter
Python内建的filter()函数用于过滤序列。
和map()类似,filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。
例如,在一个list中,删掉偶数,只保留奇数,可以这么写:
def is_odd(n):
return n % 2 == 1
list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]
把一个序列中的空字符串删掉,可以这么写:
def not_empty(s):
return s and s.strip()
list(filter(not_empty, ['A', '', 'B', None, 'C', ' ']))
# 结果: ['A', 'B', 'C']
可见用filter()这个高阶函数,关键在于正确实现一个“筛选”函数。
注意到filter()函数返回的是一个Iterator,也就是一个惰性序列,所以要强迫filter()完成计算结果,需要用list()函数获得所有结果并返回list。
用filter求素数
首先,列出从2开始的所有自然数,构造一个序列:
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取序列的第一个数2,它一定是素数,然后用2把序列的2的倍数筛掉:
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取新序列的第一个数3,它一定是素数,然后用3把序列的3的倍数筛掉:
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取新序列的第一个数5,然后用5把序列的5的倍数筛掉:
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
不断筛下去,就可以得到所有的素数。
用Python来实现这个算法,可以先构造一个从3开始的奇数序列:
def _odd_iter():
n = 1
while True:
n = n + 2
yield n
注意这是一个生成器,并且是一个无限序列。
然后定义一个筛选函数:
def _not_divisible(n):
return lambda x: x % n > 0
最后,定义一个生成器,不断返回下一个素数:
def primes():
yield 2
it = _odd_iter() # 初始序列
while True:
n = next(it) # 返回序列的第一个数
yield n
it = filter(_not_divisible(n), it) # 构造新序列
这个生成器先返回第一个素数2,然后,利用filter()不断产生筛选后的新的序列。
由于primes()也是一个无限序列,所以调用时需要设置一个退出循环的条件:
# 打印1000以内的素数:
for n in primes():
if n < 1000:
print(n)
else:
break
注意到Iterator是惰性计算的序列,所以我们可以用Python表示“全体自然数”,“全体素数”这样的序列,而代码非常简洁。
练习
回数是指从左向右读和从右向左读都是一样的数,例如12321,909。请利用filter()筛选出回数:
def is_palindrome(n):
nn = str(n)
return nn==nn[::-1]
>>> list(filter(is_palindrome,range(1,1000)))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 404, 414, 424, 434, 444, 454, 464, 474, 484, 494, 505, 515, 525, 535, 545, 555, 565, 575, 585, 595, 606, 616, 626, 636, 646, 656, 666, 676, 686, 696, 707, 717, 727, 737, 747, 757, 767, 777, 787, 797, 808, 818, 828, 838, 848, 858, 868, 878, 888, 898, 909, 919, 929, 939, 949, 959, 969, 979, 989, 999]
>>>
filter
阅读: 24179215
Python内建的filter()函数用于过滤序列。
和map()类似,filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。
例如,在一个list中,删掉偶数,只保留奇数,可以这么写:
def is_odd(n):
return n % 2 == 1
list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]
把一个序列中的空字符串删掉,可以这么写:
def not_empty(s):
return s and s.strip()
list(filter(not_empty, ['A', '', 'B', None, 'C', ' ']))
# 结果: ['A', 'B', 'C']
可见用filter()这个高阶函数,关键在于正确实现一个“筛选”函数。
注意到filter()函数返回的是一个Iterator,也就是一个惰性序列,所以要强迫filter()完成计算结果,需要用list()函数获得所有结果并返回list。
用filter求素数
首先,列出从2开始的所有自然数,构造一个序列:
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取序列的第一个数2,它一定是素数,然后用2把序列的2的倍数筛掉:
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取新序列的第一个数3,它一定是素数,然后用3把序列的3的倍数筛掉:
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取新序列的第一个数5,然后用5把序列的5的倍数筛掉:
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
不断筛下去,就可以得到所有的素数。
用Python来实现这个算法,可以先构造一个从3开始的奇数序列:
def _odd_iter():
n = 1
while True:
n = n + 2
yield n
注意这是一个生成器,并且是一个无限序列。
然后定义一个筛选函数:
def _not_divisible(n):
return lambda x: x % n > 0
最后,定义一个生成器,不断返回下一个素数:
def primes():
yield 2
it = _odd_iter() # 初始序列
while True:
n = next(it) # 返回序列的第一个数
yield n
it = filter(_not_divisible(n), it) # 构造新序列
这个生成器先返回第一个素数2,然后,利用filter()不断产生筛选后的新的序列。
由于primes()也是一个无限序列,所以调用时需要设置一个退出循环的条件:
# 打印1000以内的素数:
for n in primes():
if n < 1000:
print(n)
else:
break
注意到Iterator是惰性计算的序列,所以我们可以用Python表示“全体自然数”,“全体素数”这样的序列,而代码非常简洁。
练习
回数是指从左向右读和从右向左读都是一样的数,例如12321,909。请利用filter()筛选出回数:
# -*- coding: utf-8 -*-
# 测试:
output = filter(is_palindrome, range(1, 1000))
print('1~1000:', list(output))
if list(filter(is_palindrome, range(1, 200))) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191]:
print('测试成功!')
else:
print('测试失败!')
Run
小结
filter()的作用是从一个序列中筛出符合条件的元素。由于filter()使用了惰性计算,所以只有在取filter()结果的时候,才会真正筛选并每次返回下一个筛出的元素。
3、sorted
排序算法
排序也是在程序中经常用到的算法。无论使用冒泡排序还是快速排序,排序的核心是比较两个元素的大小。如果是数字,我们可以直接比较,但如果是字符串或者两个dict呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来。
Python内置的sorted()函数就可以对list进行排序:
>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]
此外,sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:
>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]
key指定的函数将作用于list的每一个元素上,并根据key函数返回的结果进行排序。对比原始的list和经过key=abs处理过的list:
list = [36, 5, -12, 9, -21]
keys = [36, 5, 12, 9, 21]
然后sorted()函数按照keys进行排序,并按照对应关系返回list相应的元素:
keys排序结果 => [5, 9, 12, 21, 36]
| | | | |
最终结果 => [5, 9, -12, -21, 36]
我们再看一个字符串排序的例子:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'])
['Credit', 'Zoo', 'about', 'bob']
默认情况下,对字符串排序,是按照ASCII的大小比较的,由于'Z' < 'a',结果,大写字母Z会排在小写字母a的前面。
现在,我们提出排序应该忽略大小写,按照字母序排序。要实现这个算法,不必对现有代码大加改动,只要我们能用一个key函数把字符串映射为忽略大小写排序即可。忽略大小写来比较两个字符串,实际上就是先把字符串都变成大写(或者都变成小写),再比较。
这样,我们给sorted传入key函数,即可实现忽略大小写的排序:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower)
['about', 'bob', 'Credit', 'Zoo']
要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True)
['Zoo', 'Credit', 'bob', 'about']
从上述例子可以看出,高阶函数的抽象能力是非常强大的,而且,核心代码可以保持得非常简洁。
小结
sorted()也是一个高阶函数。用sorted()排序的关键在于实现一个映射函数。
4、返回函数
含义:函数作为返回值,高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回。
例如:求和函数
def calc_sum(*args){
ax=0
for x in args:
ax=sx+x
return ax;
}
但是,如果不需要立刻求和,而是在后面的代码中,根据需要再计算怎么办?可以不返回求和的结果,而是返回求和的函数:
>>> def lazy_sum(*args):
... def calc_sum():
... ax=0
... for n in args:
... ax=ax+n
... return ax
... return calc_sum
...
>>> f=lazy_sum(1,3,5,7,9)
>>> f()
25
5、闭包
含义:注意到返回的函数在其定义内部引用了局部变量args,所以,当一个函数返回了一个函数后,其内部的局部变量还被新函数引用,所以,闭包用起来简单,实现起来可不容易。
另一个需要注意的问题是,返回的函数并没有立刻执行,而是直到调用了f()才执行。
我们来看一个例子:
>>> def count():
... fs=[]
... for i in range(1,4):
... def f():
... return i*i
... fs.append(f)
... return fs
...
>>> f1,f2,f3=count()
>>> f1()
9
全部都是9!原因就在于返回的函数引用了变量i,但它并非立刻执行。等到3个函数都返回时,它们所引用的变量i已经变成了3,因此最终结果为9。
返回闭包时牢记一点:返回函数不要引用任何循环变量,或者后续会发生变化的变量。
如果一定要引用循环变量怎么办?方法是再创建一个函数,用该函数的参数绑定循环变量当前的值,无论该循环变量后续如何更改,已绑定到函数参数的值不变:
def count():
def f(j):
def g():
return j*j
return g
fs = []
for i in range(1, 4):
fs.append(f(i)) # f(i)立刻被执行,因此i的当前值被传入f()
return fs
>>> f1, f2, f3 = count()
>>> f1()
1
>>> f2()
4
>>> f3()
9
缺点是代码较长,可利用lambda函数缩短代码。
练习
利用闭包返回一个计数器函数,每次调用它返回递增整数:
>>> s=0
>>> def createCount():
... def count():
... global s
... s=s+1
... return s
... return count
...
>>> counta=createCount()
>>> counta()
1
>>> counta()
2
>>>
>>> counta()
3
本文介绍了Python编程中的函数使用,包括调用函数、自定义函数、参数检查、返回多个值和参数类型。重点讲解了高阶函数如map、filter和reduce的应用,特别是使用filter求素数的示例。此外,文章还提到了闭包的概念,并通过示例展示了如何创建和使用闭包。最后,提供了相关练习题,巩固读者对这些概念的理解。
1555

被折叠的 条评论
为什么被折叠?



