多线程概述
Process --- 进程
Thread --- 线程
-
线程就是独立的执行路径;
-
在程序执行时,即是没有自己创建线程,后台也会有多个线程,如主线程,gc线程等;
-
main()称之为主线程,为系统的入口,用于执行整个程序;
-
在一个进程中,如果开辟了多个线程,线程的运行是由调度器安排调度,调度器与操作系统紧密相关,先后顺序是不能人为干扰的;
-
对同一份资源操作时,会存在资源抢夺的问题,需要加入并发控制;
-
线程会带来额外的开销,如cpu调度时间,并发控制开销;
-
每个线程在自己的工作内存交互,内存操作不当会存在数据不一致;
线程的创建
三种创建方式:
-
继承Thread类
-
实现Runnable接口(重点)
-
实现Callable接口
-
有返回值
-
可以抛出异常
-
//创建线程一:继承Thread类
public class TestThread1 extends Thread{
@Override
public void run(){
//run方法线程体
for(int i = 1; i< 21; i++){
System.out.println("我在看多线程!" + i);
}
}
public static void main(String[] args){
//main线程,主线程
//创建线程对象
TestThread1 testTread1 = new TestThread1();
//调用start()方法开启线程
testTread1.start();
for(int i = 1; i< 21; i++){
System.out.println("主线程!"+ i);
}
}
}
//创建线程方式二:实现runnable接口
public class TestThread2 implements Runnable{
@Override
public void run(){
//run方法线程体
for(int i = 1; i< 21; i++){
System.out.println("我在看多线程!" + i);
}
}
public static void main(String[] args){
//创建runnable接口的实现类对象
TestThread2 testThread2 = new TestThread2();
//创建线程对象,通过线程对象来开启我们的线程,代理
new Thread(testThread2).start();
for(int i = 1; i< 21; i++){
System.out.println("主线程!"+ i);
}
}
}
总结:
-
线程开启不一定立即执行,由cpu调度执行。
练习
练习1: 实现多线程网图同步下载
重写run(),调用start()
import org.apache.commons.io.FileUtils;
import java.io.File;
import java.io.IOException;
import java.net.URL;
//练习,实现多线程同步下载图片
public class TestThread1 implement Runnable{
private String url;
private String name;
public TestThread1(String url,String name){
this.url = url;
this.name = name;
}
@Override
public void run() {
WebDOwnLoder webDOwnLoder = new WebDOwnLoder();
webDOwnLoder.downloder(url,name);
System.out.println("下载了文件名为:"+name+"的文件!");
}
public static void main(String[] args) {
TestThread1 t1 = new TestThread1("https://pic.netbian.com/uploads/allimg/200102/193708-15779650287a6a.jpg","女孩起床夜景.jpg");
TestThread1 t2 = new TestThread1("https://pic.netbian.com/uploads/allimg/210819/220400-1629381840d7b6.jpg","弓箭美女.jpg");
TestThread1 t3 = new TestThread1("https://pic.netbian.com/uploads/allimg/210616/235141-1623858701738e.jpg","樱花.jpg");
new Thread(t1).start();
new Thread(t2).start();
new Thread(t3).start();
}
}
//下载器
class WebDOwnLoder{
public void downloder(String url,String name){
try {
FileUtils.copyURLToFile(new URL(url),new File(name));
} catch (IOException e) {
e.printStackTrace();
System.out.println("IO异常!downloder方法出现异常");
}
}
}
练习2:模拟龟兔赛跑
-
Thread.currentThread().getName().equals()
-
Thread.currentThread().getName()
-
Thread.sleep(10);
//模拟龟兔赛跑
public class Race implements Runnable{
private static String winner;
@Override
public void run() {
for (int i = 0; i <= 100; i++) {
//模拟兔子休息
if (Thread.currentThread().getName().equals("兔子") && i%10==0){
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//判断比赛是否结束
Boolean falg = gameOver(i);
if (falg){
break;
}
System.out.println(Thread.currentThread().getName()+"-->跑了:"+i+"步!");
}
}
//GameOver
private boolean gameOver(int steps){
if (winner!=null){
return true;
}{
if (steps>=100){
winner = Thread.currentThread().getName();
System.out.println("winner is "+winner);
return true;
}
}
return false;
}
public static void main(String[] args) {
Race race = new Race();
new Thread(race,"兔子").start();
new Thread(race,"乌龟").start();
}
}
静态代理模式
总结:
-
真实对象和代理对象都要实现同一个接口。
-
代理对象要代理真实角色。
//静态代理对象
public class StaricProxy {
public static void main(String[] args) {
new WeddingCompany(new You()).HappyMarry();
}
}
interface Marry{
void HappyMarry();
}
//真实角色
class You implements Marry{
@Override
public void HappyMarry() {
System.out.println("小明要结婚了,超开心!");
}
}
//代理角色
class WeddingCompany implements Marry{
private Marry target;
public WeddingCompany(Marry target) {
this.target = target;
}
@Override
public void HappyMarry() {
before();
this.target.HappyMarry();
after();
}
private void after() {
System.out.println("结算尾款!");
}
private void before() {
System.out.println("布置现场!");
}
}
Lamde表达式
函数式接口:
-
任何接口,如果只包含唯一一个抽象方法,就是一个函数式接口。
-
函数式接口可以用Lamde表达式来创建。
public class TestLamde {
//3.静态内部类
static class Like2 implements ILike{
@Override
public void lamde() {
System.out.println("i like lamde2 !");
}
}
public static void main(String[] args) {
ILike like = new Like();
like.lamde();
like = new Like2();
like.lamde();
//4.局部内部类
class Like3 implements ILike{
@Override
public void lamde() {
System.out.println("i like lamde3 !");
}
}
like = new Like3();
like.lamde();
//5.匿名内部类
like = new ILike() {
@Override
public void lamde() {
System.out.println("i like lamde4 !");
}
};
//用lamde简化
like = () -> {
System.out.println("i like lamde5 !");
};
like.lamde();
}
}
//1.定义一个函数式接口
interface ILike{
void lamde();
}
//2.实现类
class Like implements ILike{
@Override
public void lamde() {
System.out.println("i like lamde !");
}
}
线程状态
线程有五大状态:创建状态、就绪状态、阻塞状态、运行状态、死亡状态。
1.线程停止
-
1,建议线程正常停止 ——>利用次数,不建议死循环。
-
2,建议使用标志位 ——>设置一个标志位。
-
3,不要使用 stop() 或 destroy() 等过时的方法。
//线程停止
public class TestStop implements Runnable{
//设立一个标识位
private boolean flag = true;
@Override
public void run() {
int i = 0;
while (flag){
System.out.println("run......Thread" + i++);
}
}
//设置一个公开的方法停止线程
public void stop(){
this.flag = false;
}
public static void main(String[] args) {
TestStop testStop = new TestStop();
new Thread(testStop).start();
for (int i = 0; i < 1000; i++) {
if (i == 900){
//调用stop()停止线程
testStop.stop();
System.out.println("线程停止了");
}
}
}
}
2.线程休眠
-
sleep( 时间 ) 指定当前线程阻塞毫秒数;
-
sleep存在异常;
-
sleep时间到达后线程进入就绪状态;
-
每个对象都有一把锁,sleep不会释放锁。
//模拟网络延时,放大问题的发生性
public class TestSleep implements Runnable{
//票数10张
private int ticketNums = 10;
@Override
public void run() {
while (true){
if (ticketNums <= 0){
break;
}
//模拟延时
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()+"-->拿到了第 "+ ticketNums-- +" 张票!");
}
}
public static void main(String[] args) {
TestSleep testSleep = new TestSleep();
new Thread(testSleep,"小明").start();
new Thread(testSleep,"小红").start();
new Thread(testSleep,"小花").start();
}
}
//模拟倒计时、获取当前时间
import java.text.SimpleDateFormat;
import java.util.Date;
public class TestSleep2 {
public static void tenDown() throws InterruptedException {
int num = 10;
while (true){
if (num<0){
break;
}
System.out.println(num--);
Thread.sleep(1000);
}
}
public static void main(String[] args) throws InterruptedException {
// tenDown();
//打印系统当前时间
Date date = new Date(System.currentTimeMillis());
while (true){
Thread.sleep(1000);
System.out.println(new SimpleDateFormat("HH:mm:ss").format(date)); //设置输出格式
date = new Date(System.currentTimeMillis()); //更新当前时间
}
}
}
3.线程礼让 ( Yield )
-
礼让线程,让当前正在执行的线程暂停,但不阻塞。
-
让线程从运转状态转为就绪状态。
-
让cpu重新调度,礼让不一定成功。
//测试礼让线程,礼让不一定成功public class TestYield { public static void main(String[] args) { MyYield myYield = new MyYield(); new Thread(myYield,"a").start(); new Thread(myYield,"b").start(); }}class MyYield implements Runnable{ @Override public void run() { System.out.println(Thread.currentThread().getName()+"线程开始执行!"); Thread.yield(); //线程礼让 System.out.println(Thread.currentThread().getName()+"线程停止运行!"); }}
4.线程强制执行 ( Join )
-
Join合并线程,待此线程执行完毕后,再执行其他线程,其他线程阻塞。
//测试Join方法
public class TestJoin implements Runnable{
@Override
public void run() {
for (int i = 0; i < 500; i++) {
System.out.println("线程开始运行! ------------------->" +i);
}
}
public static void main(String[] args) throws InterruptedException {
//启动线程
TestJoin testJoin = new TestJoin();
Thread thread = new Thread(testJoin);
thread.start();
//主线程
for (int i = 0; i < 500; i++) {
if (i==200){
thread.join(); //插队
}
System.out.println("main()方法里面的方法!"+i);
}
}
}
5.观测线程状态
-
Thread.State.TERMINATED
public class TestState { public static void main(String[] args) throws InterruptedException { Thread thread = new Thread(()->{ for (int i = 0; i < 5; i++) { try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } System.out.println("========="); }); //观察状态 Thread.State state = thread.getState(); System.out.println(state); //NEW //启动后 thread.start(); state = thread.getState(); System.out.println(state); //RUN while (state != Thread.State.TERMINATED){ //只要线程不终止,就一直输出状态 Thread.sleep(100); state = thread.getState(); //更新线程状态 System.out.println(state); } }}
线程的优先级( priority )
-
Java提供一个线程调度器来监控程序中启动后进入就绪状态的所有线程,线程调度器按优先级决定先执行哪个线程。
-
线程优先级用数字表示,范围从1~10。
-
线程优先级高的不一定先跑。
-
使用以下方式改变或获取优先级。
-
getPriority()
-
setPriority ( int xxx )
-
//设置线程优先级
public class TestPriority {
public static void main(String[] args) {
//主线程默认优先级
System.out.println(Thread.currentThread().getName()+"--"+Thread.currentThread().getPriority());
MyPriority myPriority = new MyPriority();
Thread t1 = new Thread(myPriority);
Thread t2 = new Thread(myPriority);
Thread t3 = new Thread(myPriority);
Thread t4 = new Thread(myPriority);
Thread t5 = new Thread(myPriority);
Thread t6 = new Thread(myPriority);
//先设置优先级在启动
t1.start();
t2.setPriority(1);
t2.start();
t3.setPriority(4);
t3.start();
//最大优先级,MAX_PRIORITY=10
t4.setPriority(Thread.MAX_PRIORITY);
t4.start();
// t5.setPriority(-1);
// t5.start();
//
// t6.setPriority(11);
// t6.start();
}
}
class MyPriority implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"--"+Thread.currentThread().getPriority());
}
}
守护线程( daemon )
-
线程分为用户线程和守护线程。
-
虚拟机必须确保用户线程执行完毕。
-
虚拟机不用等待守护线程执行完毕。
//测试守护线程
public class TestDaemon {
public static void main(String[] args) {
God god = new God();
You you = new You();
Thread thread = new Thread(god);
thread.setDaemon(true); //默认false,表示用户线程
//守护线程
thread.start();
//用户线程
new Thread(you).start();
}
}
//上帝
class God implements Runnable{
@Override
public void run() {
while (true){
System.out.println("上帝保佑着你!");
}
}
}
//你
class You implements Runnable{
@Override
public void run() {
for (int i = 0; i < 35600; i++) {
System.out.println("活着!!");
}
System.out.println("Goodbye! World");
}
}
线程同步机制
-
锁机制( synchronized );
1.三大不安全案例
//不安全线程一:买票
public class UnsafeBuyTicket {
public static void main(String[] args) {
BuyTicket station = new BuyTicket();
new Thread(station,"黄牛党").start();
new Thread(station,"小明").start();
new Thread(station,"小红").start();
}
}
class BuyTicket implements Runnable{
private int ticketNumbers = 10;
boolean flag = true;
@Override
public void run() {
while (flag){
try {
buy();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
//买票
private void buy() throws InterruptedException {
if (ticketNumbers<=0){
flag = false;
return;
}
Thread.sleep(100);
System.out.println(Thread.currentThread().getName()+"--拿到了第:"+ ticketNumbers-- +"张票!!");
}
}
//不安全线程二:取钱
public class UnsafeBank {
public static void main(String[] args) {
// Drawing drawing = new Drawing(new Account("结婚基金",100),100);
//
// new Thread(drawing,"you").start();
// new Thread(drawing,"girlfriend").start();
Account account = new Account("结婚基金", 100);
new Drawing(account,50,"you").start();
new Drawing(account,100,"girlfriend").start();
}
}
//账户
class Account{
String name; //账户名
int money; //余额
public Account(String name, int money) {
this.name = name;
this.money = money;
}
}
//取钱
class Drawing extends Thread{
Account account;
int drawingMoney; //取了多少钱
public Drawing(Account account,int drawingMoney,String name){
super(name);
this.account = account;
this.drawingMoney = drawingMoney;
}
@Override
public void run() {
try {
drawingMoney();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//取钱
public void drawingMoney() throws InterruptedException {
System.out.println(Thread.currentThread().getName()+"-->"+"来取钱!");
if (account.money - drawingMoney < 0){
System.out.println(Thread.currentThread().getName()+"余额不足!");
return;
}
sleep(1000);
account.money -= drawingMoney;
System.out.println(this.getName()+"取走了:"+drawingMoney+"元!"+account.name+"余额:"+account.money);
}
}
import java.util.ArrayList;
import java.util.List;
//不安全线程三:泛型
public class UnfaseList {
public static void main(String[] args) throws InterruptedException {
List<String> list = new ArrayList<String>();
for (int i = 0; i < 1000; i++) {
new Thread(()->{
list.add(Thread.currentThread().getName());
}).start();
}
Thread.sleep(3000);
//打印数组长度
System.out.println(list.size());
}
}
2.同步方法及同步块
一、同步方法:
-
由于通过private关键字来保证数据对象只能被方法访问,所以只需针对方法提出一套机制,synchronized方法和synchronized块。
public synchronized method(int args){} -
synchronized方法控制对 “ 对象 ” 的访问,每个对象对应一把锁,每个synchronized方法都必须获得调用改方法的对象的锁才能执行,否则线程会阻塞,方法一旦执行,就独占该锁,知道方法返回才释放锁。
-
缺点:影响效率。
二、同步块
-
synchronized ( Obj ) { }
-
Obj称之为同步监视器。Obj可以是任何对象,但是推荐使用共享资源作为同步监视器。
//同步块
public class UnsafeBank {
public static void main(String[] args) {
// Drawing drawing = new Drawing(new Account("结婚基金",100),100);
//
// new Thread(drawing,"you").start();
// new Thread(drawing,"girlfriend").start();
Account account = new Account("结婚基金", 100);
new Drawing(account,50,"you").start();
new Drawing(account,100,"girlfriend").start();
}
}
//账户
class Account{
String name; //账户名
int money; //余额
public Account(String name, int money) {
this.name = name;
this.money = money;
}
}
//取钱
class Drawing extends Thread{
Account account;
int drawingMoney; //取了多少钱
public Drawing(Account account,int drawingMoney,String name){
super(name);
this.account = account;
this.drawingMoney = drawingMoney;
}
@Override
public void run() {
try {
drawingMoney();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//取钱
public void drawingMoney() throws InterruptedException {
//锁的对象是变化的量
synchronized (account){
System.out.println(Thread.currentThread().getName()+"-->"+"来取钱!");
if (account.money - drawingMoney < 0){
System.out.println(Thread.currentThread().getName()+"余额不足!");
return;
}
sleep(1000);
account.money -= drawingMoney;
System.out.println(this.getName()+"取走了:"+drawingMoney+"元!"+account.name+"余额:"+account.money);
}
}
}
三、扩充:JUC安全类型的集合 CopyOnWriteArrayList
import java.util.concurrent.CopyOnWriteArrayList;
//测试JUC安全类型的集合
public class TestJUC {
public static void main(String[] args) throws InterruptedException {
CopyOnWriteArrayList<String> copyOnWriteArrayList = new CopyOnWriteArrayList<String>();
for (int i = 0; i < 1000; i++) {
new Thread(()->{
copyOnWriteArrayList.add(Thread.currentThread().getName());
}).start();
}
Thread.sleep(3000);
System.out.println(copyOnWriteArrayList.size());
}
}
3.死锁
-
多个线程各自占有一些共有的资源,并且等待其他线程占有的资源才能运行,而导致两个或多个线程都在等待对方释放资源,都形成停止执行的情况,某一个同步块同时拥有两个以上对象的锁,就会产生 死锁 问题。
//死锁
public class DeadLock {
public static void main(String[] args) {
Makeup g1 = new Makeup(0,"灰姑娘");
Makeup g2 = new Makeup(1,"白雪公主");
g1.start();
g2.start();
}
}
//口红
class Lipstick{}
//镜子
class Millo{}
class Makeup extends Thread{
//需要的资源,只有一份用static
static Lipstick lipstick = new Lipstick();//口红
static Millor millor = new Millor();//镜子
int choice;//选择
String name;//人
public Makeup(int choice,String name){
this.choice = choice;
this.name = name;
}
@Override
public void run() {
//化妆
try {
makeup();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public void makeup() throws InterruptedException {
if (choice==0){
synchronized (lipstick){
System.out.println(this.name+":获得口红!");
Thread.sleep(1000);
}
synchronized (millor){
System.out.println(this.name+":获得镜子!");
}
}else {
synchronized (millor){
System.out.println(this.name+":获得镜子!");
Thread.sleep(2000);
}
synchronized (lipstick){
System.out.println(this.name+":获得口红!");
}
}
}
}
4.Lock(锁)
-
显示定义同步锁;
-
Lock接口是控制多个线程对共享资源进行访问的工具;
-
ReentrantLock 类实现了Lock接口;
-
加锁:lock(); 解锁:unlock();
import java.util.concurrent.locks.ReentrantLock;
//测试Lock锁
public class TestLock {
public static void main(String[] args) {
TestLock2 testLock2 = new TestLock2();
new Thread(testLock2).start();
new Thread(testLock2).start();
new Thread(testLock2).start();
}
}
class TestLock2 implements Runnable{
int ticketNums = 10;
//定义Lock锁
private final ReentrantLock lock = new ReentrantLock();
@Override
public void run() {
while (true){
try{
//加锁
lock.lock();
if (ticketNums>0){
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("获得了第:"+ticketNums--+"张票!");
}else {
break;
}
}finally {
//解锁
lock.unlock();
}
}
}
}
线程协作
1.生产者消费者问题
-
wait() 表示线程一直等待,直到其他线程通知,与sleep不同,会释放锁;
-
notigy() 唤醒一个处于等待的线程。
一、管程法
//测试生产者消费者模型,利用缓冲区:管程法
public class TestPC {
public static void main(String[] args) {
SynContainer container = new SynContainer();
new Productor(container).start();
new Consumer(container).start();
}
}
//生产者
class Productor extends Thread{
SynContainer synContainer;
public Productor(SynContainer synContainer){
this.synContainer = synContainer;
}
//生产
@Override
public void run() {
for (int i = 0; i < 100; i++) {
synContainer.push(new Chichen(i));
System.out.println("生产了:"+i+"只鸡!");
}
}
}
//消费者
class Consumer extends Thread{
SynContainer synContainer;
public Consumer(SynContainer synContainer){
this.synContainer = synContainer;
}
//消费
@Override
public void run() {
for (int i = 0; i < 100; i++) {
System.out.println("消费了第:"+synContainer.pop().id+"只鸡!!");
}
}
}
//产品
class Chichen{
int id;//编号
public Chichen(int id) {
this.id = id;
}
}
//缓冲区
class SynContainer{
//容器大小
Chichen[] chichens = new Chichen[10];
//容器计数器
int count =0;
//生产者放入产品
public synchronized void push(Chichen chichen){
//如果容器满了,就需要等待消费者
if (count==chichens.length){
//通知消费者
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//如果没满就需要丢入产品
chichens[count] = chichen;
count++;
this.notifyAll();
}
//消费者
public synchronized Chichen pop(){
//判断是否能消费
if (count==0){
//等待生产者生产
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//消费
count--;
Chichen chichen = chichens[count];
//吃完了,通知生产者
this.notify();
return chichen;
}
}
二、信号灯法
//测试生产者消费者模型2,信号灯法
public class TestPC2 {
public static void main(String[] args) {
TV tv = new TV();
new Player(tv).start();
new Watcher(tv).start();
}
}
//演员
class Player extends Thread{
TV tv;
public Player(TV tv){
this.tv = tv;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
if (i%2==0){
this.tv.play("喜羊羊与灰太狼播放中!!");
}else {
this.tv.play("广告中!!");
}
}
}
}
//观众
class Watcher extends Thread{
TV tv;
public Watcher(TV tv){
this.tv = tv;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
this.tv.watch();
}
}
}
//观看
class TV{
//节目
String voice;
boolean flag = true;
//表演
public synchronized void play(String voice){
if (!flag){
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
this.voice =voice;
System.out.println("演员表演了:"+voice);
this.notifyAll();
this.flag = !this.flag;
}
//观看
public synchronized void watch(){
if (flag){
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("观看了:"+voice);
this.notify();
this.flag = !this.flag;
}
}
线程池
-
优点:
-
提高响应速度;
-
降低资源消耗;
-
便于线程管理。
-
-
参数:
-
corePoolSize:核心池的大小;
-
maximumPoolSize:最大线程数;
-
keepALivetime:线程没有任务时最多保持多长时间后终止。
-
-
ExecutorService:真正的线程池接口,常见子类ThreadPoolExector。
-
void execute (Runnable command) : 执行任务/命令,没有返回值,一般用来执行Runnable。
-
void shutdown ():关闭连接池。
-
-
Executors:工具类、线程池的工厂类,用于创建并返回不同类型的线程池。
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
//测试线程池
public class TestPool {
public static void main(String[] args) {
//1.创建服务,创建线程池
//newFixedThreadPool 线程池的大小
ExecutorService service = Executors.newFixedThreadPool(10);
//执行
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
//2.关闭连接
service.shutdown();
}
}
class MyThread implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+i);
}
}

被折叠的 条评论
为什么被折叠?



