Minimum Transport Cost

本文介绍了一种使用Floyd算法寻找城市间最低运输成本的方法,包括路费和过城税,通过松弛路径并记录路径信息,实现任意两点间的最小费用计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

These are N cities in Spring country. Between each pair of cities there may be one transportation track or none. Now there is some cargo that should be delivered from one city to another. The transportation fee consists of two parts: 
The cost of the transportation on the path between these cities, and 

a certain tax which will be charged whenever any cargo passing through one city, except for the source and the destination cities. 

You must write a program to find the route which has the minimum cost. 

Input

First is N, number of cities. N = 0 indicates the end of input. 

The data of path cost, city tax, source and destination cities are given in the input, which is of the form: 

a11 a12 ... a1N 
a21 a22 ... a2N 
............... 
aN1 aN2 ... aNN 
b1 b2 ... bN 

c d 
e f 
... 
g h 

where aij is the transport cost from city i to city j, aij = -1 indicates there is no direct path between city i and city j. bi represents the tax of passing through city i. And the cargo is to be delivered from city c to city d, city e to city f, ..., and g = h = -1. You must output the sequence of cities passed by and the total cost which is of the form: 

Output

From c to d : 
Path: c-->c1-->......-->ck-->d 
Total cost : ...... 
...... 

From e to f : 
Path: e-->e1-->..........-->ek-->f 
Total cost : ...... 

Note: if there are more minimal paths, output the lexically smallest one. Print a blank line after each test case. 
 

Sample Input

5
0 3 22 -1 4
3 0 5 -1 -1
22 5 0 9 20
-1 -1 9 0 4
4 -1 20 4 0
5 17 8 3 1
1 3
3 5
2 4
-1 -1
0

Sample Output

From 1 to 3 :
Path: 1-->5-->4-->3
Total cost : 21

From 3 to 5 :
Path: 3-->4-->5
Total cost : 16

From 2 to 4 :
Path: 2-->1-->5-->4
Total cost : 17

 

题意:

城市与城市之间需要路费,路过的城市要收税,

问任意两个城市之间运输东西所需的最少费用,并输出路径。

费用相同时按字典序输出。

 

思路:

利用floyd算法松弛路径,并用path [ i ] [ j ] 记录路径。

 

代码:

#include<stdio.h>
#include<algorithm>
#include<string.h>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn=100;
int dis[maxn][maxn],path[maxn][maxn],n,cost[maxn];
int u,st,en;
int main()
{
    while(~scanf("%d",&n),n)
    {
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++)
            {
                scanf("%d",&u);
                if(u==-1)
                    dis[i][j]=INF;
                else
                {
                    dis[i][j]=u;
                    path[i][j]=j;
                }
            }
        for(int i=1; i<=n; i++)
            scanf("%d",&cost[i]);
        for(int k=1; k<=n; k++)
            for(int i=1; i<=n; i++)
                for(int j=1; j<=n; j++)
                {
                    int tmp=dis[i][k]+dis[k][j]+cost[k];
                    if(tmp<dis[i][j]||(tmp==dis[i][j]&&path[i][j]>path[i][k]))
                    {
                        dis[i][j]=tmp;
                        path[i][j]=path[i][k];
                    }
                }
        while(~scanf("%d%d",&st,&en))
        {
            if(st==-1&&en==-1)  break;
            printf("From %d to %d :\n",st,en);
            printf("Path: %d",st);
            int t=st;
            while(t!=en)
            {
                printf("-->%d",path[t][en]);
                t=path[t][en];
            }
            printf("\nTotal cost : %d\n\n",dis[st][en]);
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值