Kaggle比赛(二)House Prices: Advanced Regression Techniques

Kaggle房价预测实战:特征工程与模型融合
本文作者通过参与Kaggle的House Prices: Advanced Regression Techniques比赛,学习并实践了数据分析、特征工程和集成学习。文章介绍了数据预处理、离群值处理、特征相关性分析、缺失值处理、Box-Cox变换、独热编码以及多种模型的建立与融合。最终在Leaderboard上取得了0.11676的评分。

房价预测是我入门Kaggle的第二个比赛,参考学习了他人的一篇优秀教程:https://www.kaggle.com/serigne/stacked-regressions-top-4-on-leaderboard

通过Serigne的这篇notebook,我学习到了关于数据分析、特征工程、集成学习等等很多有用的知识,在这里感谢一下这位大佬。

本篇文章立足于Serigne的教程,将他的大部分代码实现了一遍,修正了个别小错误,也加入了自己的一些视角和思考,做了一些自认为reasonable的“改进”。最终在Leaderboard上的得分为0.11676,排名前13%。虽然最后结果反而变差了一点(没有道理啊!QAQ),但我觉得整个实践的过程仍然值得记录一下。

废话不多说,下面进入正文。

数据集概览

导入相关Python包:

#import some necessary librairies

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
%matplotlib inline
import matplotlib.pyplot as plt  # Matlab-style plotting
import seaborn as sns
color = sns.color_palette()
sns.set_style('darkgrid')
import warnings
def ignore_warn(*args, **kwargs):
    pass
warnings.warn = ignore_warn #ignore annoying warning (from sklearn and seaborn)

from scipy import stats
from scipy.stats import norm, skew #for some statistics

pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) #Limiting floats output to 3 decimal points

from subprocess import check_output
print(check_output(["ls", "../input"]).decode("utf8")) #check the files available in the directory

sample_submission.csv
test.csv
train.csv

读取csv文件:

train = pd.read_csv('datasets/train.csv')
test = pd.read_csv('datasets/test.csv')

查看数据集前5行:

train.head(5)
  Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities ... PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType SaleCondition SalePrice
0 1 60 RL 65.000 8450 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 2 2008 WD Normal 208500
1 2 20 RL 80.000 9600 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 5 2007 WD Normal 181500
2 3 60 RL 68.000 11250 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 9 2008 WD Normal 223500
3 4 70 RL 60.000 9550 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 2 2006 WD Abnorml 140000
4 5 60 RL 84.000 14260 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 12 2008 WD Normal 250000

5 rows × 81 columns

test.head(5)
  Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities ... ScreenPorch PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType SaleCondition
0 1461 20 RH 80.000 11622 Pave NaN Reg Lvl AllPub ... 120 0 NaN MnPrv NaN 0 6 2010 WD Normal
1 1462 20 RL 81.000 14267 Pave NaN IR1 Lvl AllPub ... 0 0 NaN NaN Gar2 12500 6 2010 WD Normal
2 1463 60 RL 74.000 13830 Pave NaN IR1 Lvl AllPub ... 0 0 NaN MnPrv NaN 0 3 2010 WD Normal
3 1464 60 RL 78.000 9978 Pave NaN IR1 Lvl AllPub ... 0 0 NaN NaN NaN 0 6 2010 WD Normal
4 1465 120 RL 43.000 5005 Pave NaN IR1 HLS AllPub ... 144 0 NaN NaN NaN 0 1 2010 WD
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值