源码下载:
http://download.youkuaiyun.com/download/adam_zs/10190240
import re
import collections
# 把语料中的单词全部抽取出来, 转成小写, 并且去除单词中间的特殊符号
def words(text):
new_words = re.findall('[a-z]+', text.lower())
return new_words
# 统计每个单词出现的次数
def train(features):
model = collections.defaultdict(lambda: 1)
for f in features:
model[f] = model[f] + 1
return model
# 所有单词以及出现的次数
NWORDS = train(words(open('big.txt').read()))
# 返回所有编辑距离为1的单词集合
def edits1(word):
alphabet = 'abcdefghijklmnopqrstuvwxyz'
n = len(word)
return set([word[0:i] + word[i + 1:] for i in range(n)] + # deletion
[word[0:i] + word[i + 1] + word[i] + word[i + 2:] for i in range(n - 1)] + # transposition
[word[0:i] + c + word[i + 1:] for i in range(n) for c in alphabet] + # alteration
[word[0:i] + c + word[i:] for i in range(n + 1) for c in alphabet]) # insertion
# 返回所有编辑距离为2的单词集合
def known_edits2(word):
return set(e2 for e1 in edits1(word) for e2 in edits1(e1))
# 只把那些正确的词作为候选词
def known(words):
return set(w for w in words if w in NWORDS)
# 如果known(set)非空, candidate 就会选取这个集合, 而不继续计算后面的
def correct(word):
candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]
print(candidates)
return max(candidates, key=lambda w: NWORDS[w])
print(correct('namg'))
本文介绍了一种基于编辑距离的英文单词拼写纠正算法。该算法通过定义一系列字符串操作(如删除、交换、替换和插入),找出输入单词的正确拼写。首先从一个大语料库中提取单词并统计频次,然后利用这些统计信息来确定最可能的正确拼写。
518

被折叠的 条评论
为什么被折叠?



