Codeforces Round #345 (Div. 2) C. Watchmen

C. Watchmen
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Watchmen are in a danger and Doctor Manhattan together with his friend Daniel Dreiberg should warn them as soon as possible. There are n watchmen on a plane, the i-th watchman is located at point (xi, yi).

They need to arrange a plan, but there are some difficulties on their way. As you know, Doctor Manhattan considers the distance between watchmen i and j to be |xi - xj| + |yi - yj|. Daniel, as an ordinary person, calculates the distance using the formula .

The success of the operation relies on the number of pairs (i, j) (1 ≤ i < j ≤ n), such that the distance between watchman i and watchmen j calculated by Doctor Manhattan is equal to the distance between them calculated by Daniel. You were asked to compute the number of such pairs.

Input

The first line of the input contains the single integer n (1 ≤ n ≤ 200 000) — the number of watchmen.

Each of the following n lines contains two integers xi and yi (|xi|, |yi| ≤ 109).

Some positions may coincide.

Output

Print the number of pairs of watchmen such that the distance between them calculated by Doctor Manhattan is equal to the distance calculated by Daniel.

Examples
input
3
1 1
7 5
1 5
output
2
input
6
0 0
0 1
0 2
-1 1
0 1
1 1
output
11
Note

In the first sample, the distance between watchman 1 and watchman 2 is equal to |1 - 7| + |1 - 5| = 10 for Doctor Manhattan and  for Daniel. For pairs (1, 1)(1, 5) and (7, 5)(1, 5) Doctor Manhattan and Daniel will calculate the same distances.

给你n个点的坐标,叫你求((xj-xi)+(yj-yi))*((xj-xi)+(yj-yi))=(xj-xi)*(xj-xi)+(yj-yi)*(yj-yi)

思路:如果该式子成立有三种情况

1.xi=xj        

2.yi=yj 

3.xi=xj&&yi=yj

x相等的对数加y相等的对数减去xy都相等的对数就好了。

此题需要注意的一点是求x,y都相等的对数的时候不能利用x*(1e9+1)+y进行hash,因为x可能为负数,所以(0,-1)(-1,1e9)hash值是相同的。应该乘以(1e10+1)!!!!!!

或者对原来的x,y进行统一排序,然后判断x,y同时相等的数目

#include<bits/stdc++.h>
using namespace std;
const int maxn=201000;
typedef __int64 ll;
struct node{
    int x,y;
}a[maxn];
const ll M=1e9;
map<ll,int>mp1,mp2;
bool cmp(node x,node y){
    if(x.x!=y.x)
        return x.x<y.x;
    return x.y<y.y;
}

int main(){
    int n;
    while(scanf("%d",&n)!=EOF){
        for(int i=1;i<=n;i++)
            scanf("%d%d",&a[i].x,&a[i].y);
        mp1.clear(),mp2.clear();
        __int64 ans=0;
        for(int i=1;i<=n;i++){
            ans=ans+mp1[a[i].x],mp1[a[i].x]++;
            ans=ans+mp2[a[i].y],mp2[a[i].y]++;
        }
        sort(a+1,a+n+1,cmp);
        int cnt=0;
        for(int i=2;i<=n;i++){
            if(a[i].x==a[i-1].x&&a[i].y==a[i-1].y){
                cnt++;
                ans-=cnt;
            }
            else
                cnt=0;
        }
        printf("%I64d\n",ans);
    }
    return 0;
}

#include<bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=201000;
typedef __int64 ll;
typedef unsigned __int64 ull;
__int64 x[maxn],y[maxn];
const ull M=1e10;
map<ll,int>mp1,mp2;
map<ull,int>mp3;

int main(){
    int n;
    while(scanf("%d",&n)!=EOF){
        for(int i=1;i<=n;i++)
            scanf("%I64d%I64d",&x[i],&y[i]);
        mp1.clear(),mp2.clear(),mp3.clear();
        __int64 ans=0;
        for(int i=1;i<=n;i++){
            ans=ans+mp1[x[i]],mp1[x[i]]++;
            ans=ans+mp2[y[i]],mp2[y[i]]++;
            ans=ans-mp3[(M+1)*x[i]+y[i]],mp3[(M+1)*x[i]+y[i]]++;
        }
        printf("%I64d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值