hdu 5109 Alexandra and A*B Problem(取模,枚举,数学数论)

本文解析了一道编程题:给定A和字符串S,找到最小正整数B,使得A*B的结果中包含S作为子串。文章详细阐述了解题思路,采用取模技巧缩小搜索范围,最终通过枚举得出答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Alexandra and A*B Problem

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 804    Accepted Submission(s): 212


Problem Description
Alexandra has a little brother. He is new to programming. One day he is solving the following problem: Given two positive integers A and B, output A*B.
This problem is even easier than the last one. Alexandra can't wait to give him another task: Given a positive integer A and a string S(S only contains numbers.), find the minimum positive integer B, such that S is a substring of T, where T is the decimal notation of A*B.
See the sample for better understanding.
Note: S can contain leading zeros, but T can't.
 

Input
There are multiple test cases (no more than 500). Each case contains a positive integer A and a string S.
A10,000,1|S|8 .
 

Output
For each case, output the required B. It is guaranteed that such B always exists.
To C++ programmers: if you want to output 64-bit integers, please use "%I64d" specifier or cout.
 

Sample Input
  
  
6 8 96 19 2 0086 1 1
 

Sample Output
  
  
3 2 5043 1
题意:A*B=T,S是T的字串,比如T是11000 S可能是100 1100... 

给你A和S,找出最小的B满足条件

思路:刚看这题完全没思路...还是取模的题目做少了。

我们假设T=XsY  X和Y分别是补在s前面和后面的一个串,设len为s的长度,len1为Y的长度

则T=(X*10^len+s)*10^len1+Y  由于A*B=T,所以有T%A==0   所以对于大于a的X和Y我们就可以通过取模减小0范围

 这样X~[0,a)  当然如果s有前导0,X~[1,a),因为0相当于什么也不加。

当s==0的时候,直接输出0  任何数乘以0都为0

然后我们只要枚举X和len1就可以得到Y,然后就可以求出满足条件的最小的T

然后T/a即为最后的答案

注意因为Y~[0,a)所以len1范围为0~4  Y不一定是一个整数,可以形如0083

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
long long pow_(long long a,long long n)
{
    long long ans=1;
    while(n)
    {
        if(n&1) ans=ans*a;
        a=a*a;
        n>>=1;
    }
    return ans;
}
int main()
{
    long long a;
    char s[10];
    while(~scanf("%lld",&a))
    {
        scanf("%s",s);
        long long num=0,len=strlen(s);
        for(int i=0; i<len; i++)
            num=num*10+s[i]-'0';
        int flag=0;
        if(len>1&&s[0]=='0') flag=1;
        if(len==1&&num==0) printf("0\n");
        else
        {
            long long i=0,last_ans=-1;
            if(flag) i=1;
            for(; i<a; i++)
            {
                long long ans=i*pow_(10,len)+num;
                for(long long j=1; j<=10000; j*=10)
                {
                    long long mod=ans*j;
                    long long y=(a-mod%a)%a;
                    if(y<j)
                    {
                        mod+=y;
                        if(last_ans==-1) last_ans=mod;
                        else last_ans=min(last_ans,mod);
                    }
                }
            }
            printf("%lld\n",last_ans/a);
        }
    }
    return 0;
}



HDU 2034 是一道经典的 A-B Problem 题目,通常涉及简单的数学运算或者字符串处理逻辑。以下是对此类问题的分析以及可能的解决方法。 ### HDU 2034 的题目概述 该题目要求计算两个数之间的差值 \(A - B\) 并输出结果。需要注意的是,输入数据可能存在多种情况,因此程序需要能够适应不同的边界条件和特殊情况[^1]。 #### 输入描述 - 多组测试数据。 - 每组测试数据包含两行,分别表示整数 \(A\) 和 \(B\)。 #### 输出描述 对于每组测试数据,输出一行表示 \(A - B\) 的结果。 --- ### 解决方案 此类问题的核心在于正确读多组输入并执行减法操作。以下是实现此功能的一种常见方式: ```python while True: try: a = int(input()) b = int(input()) print(a - b) except EOFError: break ``` 上述代码片段通过循环不断接收输入直到遇到文件结束符 (EOF),适用于批量处理多组测试数据的情况。 --- ### 特殊考虑事项 尽管基本思路简单明了,在实际编码过程中仍需注意以下几点: 1. **大数值支持**:如果题目中的 \(A\) 或 \(B\) 可能非常大,则应选用可以容纳高精度的数据类型来存储这些变量。 2. **负数处理**:当 \(B>A\) 导致结果为负时,确保程序不会因符号错误而失效。 3. **异常捕获**:为了防止运行期间由于非法字符或其他意外状况引发崩溃,建议加入必要的错误检测机制。 --- ### 示例解释 假设给定如下样例输入: ``` 5 3 7 2 ``` 按照以上算法流程依次完成各步操作后得到的结果应当分别为 `2` 和 `5`。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值