POJ 1182

并查集与相对关系的应用

//我一直还不太懂这题怎么解,为了方便,我暂时转下来待以后专。。。


建议:做此题之前先做 poj 2524 和 poj 1611。这两道题都是并查集的基础应用。

关键词:并查集 相对关系
思路:(用一个并查集就够了,同时对每个节点保持其到根结点的相对类别偏移量)
1.father[x]表示x的根结点。rank[x]表示father[x]与x的关系。rank[x] == 0 表示father[x]与x同类;1表示father[x]吃x;2表示x吃father[x]。

2.怎样划分一个集合呢?
注意,这里不是根据x与father[x]是否是同类来划分。而是根据“x与father[x]能否确定两者之间的关系”来划分,若能确定x与father[x]的关系,则它们同属一个集合。

3.怎样判断一句话是不是假话?
假设已读入 D , X , Y , 先利用find_set()函数得到X , Y 所在集合的代表元素 xf ,yf ,若它们在同一集合(即 xf == yf )则可以判断这句话的真伪( 据 2. ).
若 D == 1 而 rank[X] != rank[Y] 则此话为假。(D == 1 表示X与Y为同类,而从rank[X] != rank[Y]可以推出 X 与 Y 不同类。矛盾。)
若 D == 2 而 rank[X] == rank[Y] (X 与Y为同类)或者 rank[X] == ( rank[Y] + 1 ) % 3 (Y吃X )则此话为假。

4.上个问题中 r[X] == ( r[Y] + 1 ) % 3这个式子怎样推来?假设有Y吃X,那么r[X]和r[Y]的值是怎样的?
我们来列举一下: r[X] = 0 && r[Y] = 2
r[X] = 1 && r[Y] = 0
r[X] = 2 && r[Y] = 1
稍微观察一下就知道r[X] = ( r[Y] + 1 ) % 3;事实上,对于上个问题有更一般的判断方法:
若 ( r[Y] - r[X] + 3 ) % 3 != D - 1 ,则此话为假。(来自poj 1182中的Discuss )

5、注意事项:

A、我们用x--r-->y表示x和y之间的关系是r,比如x--1--y代表x吃y。现在,若已知x--r1-->y,y--r2-->z,如何求x--?-->z?,于是我们不难发现,x--(r1+r2)%3-->z。这个就是在Find_Set(int x)函数中用到的更新x与father[X]的关系

B、当D X Y时,则应合并X的根节点和Y的根节点,同时修改各自的rank。那么问题来了,合并了之后,被合并的根节点的kind值如何变化呢?
现有x和y,d为x和y的关系,xf和yf分别是x和y的根节点,于是我们有x--rank[x]-->xf,y--rank[y]-->yf,显然我们可以得到xf--(3-rank[x])-->x,yf--(3-rank[y])-->y。假如合并后x为新的树的根节点,那么原先fx树上的节点不需变化,yf树则需改变了,因为rank值为该节点和树根的关系。这里只改变rank(yf)即可,因为在进行find_set操作时可相应改变yf树的所有节点的kind值。于是问题变成了yf--?-->xf。我们不难发现yf--(3-rank[y])-->y--(3-d)-->x--rank[x]-->xf,根据前面的结论,我们有yf--(3-rank[y])-->y--(3-d)-->x--rank[x]-->xf。我们求解了xf和yf的关系了。

代码如下:

Cpp代码 
#include <iostream> 
const int MAX=50005; 

int father[MAX]; 
int rank[MAX]; 


//初始化集合 
void Make_Sent(int x) 
{ 
father[x]=x; 
rank[x]=0; 
} 

//查找x的集合,回溯时压缩路径,并修改x与father[x]的关系 
int Find_set(int x) 
{ 
int t; 
if(x!=father[x]) 
{ 
t = father[x]; 
father[x]= Find_set(father[x]); 
//更新x与father[X]的关系 
rank[x] = (rank[x]+rank[t])%3; 
} 
return father[x]; 
} 

//合并x,y所在的集合 
void Union(int x,int y,int d) 
{ 
int xf = Find_set(x); 
int yf = Find_set(y); 
//将集合xf合并到yf集合上 
father[xf] = yf; 
//更新 xf 与father[xf]的关系 
rank[xf]=(rank[y]-rank[x]+3+d)%3; 
} 


int main() 
{ 
int totle=0; 
int i,n,k,x,y,d,xf,yf; 
scanf("%d%d",&n,&k); 
for(i=1;i<=n;++i) 
Make_Sent(i); 
while(k--) 
{ 
scanf("%d%d%d",&d,&x,&y); 
//如果x或y比n大,或x吃x,是假话 
if(x>n||y>n||(d==2 && x == y)) 
{ 
totle++; 
} 
else 
{ 
xf = Find_set(x); 
yf = Find_set(y); 
//如果x,f的父节点相同 ,那么可以判断给出的关系是否正确的 
if(xf == yf) 
{ 
if((rank[x]-rank[y]+3)%3 != d-1) 
totle++; 
} 
else 
{ 
//否则合并x,y 
Union(x,y,d-1); 
} 
} 
} 
printf("%d\n",totle); 
system("pause"); 
return 0; 
} 





【评估多目标跟踪方法】9个高度敏捷目标在编队中的轨迹和测量研究(Matlab代码实现)内容概要:本文围绕“评估多目标跟踪方法”,重点研究9个高度敏捷目标在编队飞行中的轨迹生成与测量过程,并提供完整的Matlab代码实现。文中详细模拟了目标的动态行为、运动约束及编队结构,通过仿真获取目标的状态信息与观测数据,用于验证和比较不同多目标跟踪算法的性能。研究内容涵盖轨迹建模、噪声处理、传感器测量模拟以及数据可视化等关键技术环节,旨在为雷达、无人机编队、自动驾驶等领域的多目标跟踪系统提供可复现的测试基准。; 适合人群:具备一定Matlab编程基础,从事控制工程、自动化、航空航天、智能交通或人工智能等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于多目标跟踪算法(如卡尔曼滤波、粒子滤波、GM-CPHD等)的性能评估与对比实验;②作为无人机编队、空中交通监控等应用场景下的轨迹仿真与传感器数据分析的教学与研究平台;③支持对高度机动目标在复杂编队下的可观测性与跟踪精度进行深入分析。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注轨迹生成逻辑与测量模型构建部分,可通过修改目标数量、运动参数或噪声水平来拓展实验场景,进一步提升对多目标跟踪系统设计与评估的理解。
本软件实现了一种基于时域有限差分法结合时间反转算法的微波成像技术,旨在应用于乳腺癌的早期筛查。其核心流程分为三个主要步骤:数据采集、信号处理与三维可视化。 首先,用户需分别执行“WithTumor.m”与“WithoutTumor.m”两个脚本。这两个程序将在模拟生成的三维生物组织环境中进行电磁仿真,分别采集包含肿瘤模型与不包含肿瘤模型的场景下的原始场数据。所获取的数据将自动存储为“withtumor.mat”与“withouttumor.mat”两个数据文件。 随后,运行主算法脚本“TR.m”。该程序将加载上述两组数据,并实施时间反转算法。算法的具体过程是:提取两组仿真信号之间的差异成分,通过一组专门设计的数字滤波器对差异信号进行增强与净化处理,随后在数值模拟的同一组织环境中进行时间反向的电磁波传播计算。 在算法迭代计算过程中,系统会按预设的周期(每n次迭代)自动生成并显示三维模拟空间内特定二维切面的电场强度分布图。通过对比观察这些动态更新的二维场分布图像,用户有望直观地识别出由肿瘤组织引起的异常电磁散射特征,从而实现病灶的视觉定位。 关于软件的具体配置要求、参数设置方法以及更深入的技术细节,请参阅软件包内附的说明文档。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值