要实现视频中人物和车辆的识别并统计数量,我们可以使用OpenCV结合深度学习模型(如YOLO或SSD)来实现。下面是一个完整的解决方案:
方案概述
-
使用OpenCV读取视频帧
-
加载预训练的目标检测模型(这里使用YOLOv3)
-
对每帧进行目标检测
-
过滤出"person"和"car"类别
-
统计数量并显示结果
完整代码实现
【python】
import cv2
import numpy as np
加载YOLOv3模型
def load_yolo():
net = cv2.dnn.readNet(“yolov3.weights”, “yolov3.cfg”)
classes = []
with open(“coco.names”, “r”) as f:
classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
return net, classes, output_layers
检测对象函数
def detect_objects(img, net, output_layers, classes):
height, width, channels = img.shape
# 预处理图像
blob = cv2.dnn.blobFromImage(img, 1/255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# 解析检测结果
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5 and (classes[class_id] == 'person' or classes[class_id] == 'car'):
# 检测到人或车
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# 矩形坐标
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
# 应用非极大值抑制
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
return boxes, confidences, class_ids, indexes, classes
主函数
def main():
# 加载模型
model, classes, output_layers = load_yolo()
# 初始化计数器
person_count = 0
car_count = 0
total_frames = 0
# 打开视频文件或摄像头
cap = cv2.VideoCapture("your_video.mp4") # 替换为你的视频路径或0表示摄像头
if not cap.isOpened():
print("无法打开视频源")
return
while True:
ret, frame = cap.read()
if not ret:
break
total_frames += 1
# 检测对象
boxes, confidences, class_ids, indexes, classes = detect_objects(frame, model, output_layers, classes)
# 临时计数器
temp_person = 0
temp_car = 0
# 绘制检测框并计数
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
if label == 'person':
temp_person += 1
color = (0, 255, 0) # 绿色表示人
elif label == 'car':
temp_car += 1
color = (255, 0, 0) # 蓝色表示车
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
cv2.putText(frame, label, (x, y + 30), font, 3, color, 3)
# 更新总计数
person_count += temp_person
car_count += temp_car
# 显示统计信息
cv2.putText(frame, f"Total Persons: {person_count}", (10, 30), font, 2, (0, 255, 0), 2)
cv2.putText(frame, f"Total Cars: {car_count}", (10, 70), font, 2, (255, 0, 0), 2)
cv2.putText(frame, f"Frame: {total_frames}", (10, 110), font, 2, (255, 255, 255), 2)
# 显示帧
cv2.imshow("Object Detection", frame)
# 按q退出
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
print(f"视频处理完成!总帧数: {total_frames}")
print(f"检测到的人物总数: {person_count}")
print(f"检测到的车辆总数: {car_count}")
if name == “main”:
main()
使用说明
-
你需要下载以下YOLOv3模型文件:
• yolov3.weights(权重文件)
• yolov3.cfg(配置文件)
• coco.names(包含类别名称的文件)
-
将这些文件放在与脚本相同的目录下,或者修改代码中的路径。
-
将your_video.mp4替换为你的视频文件路径,或者使用0表示使用摄像头。
替代方案(使用OpenCV内置模型)
如果你不想使用YOLO,OpenCV也提供了内置的SSD模型:
【python】
def load_opencv_model():
# 加载OpenCV内置的SSD模型
net = cv2.dnn.readNetFromTensorflow(“opencv_extra/testdata/dnn/frozen_inference_graph.pb”,
“opencv_extra/testdata/dnn/ssd_mobilenet_v2_coco_2018_03_29.pbtxt”)
return net
修改后的detect_objects函数
def detect_objects_opencv(img, net):
height, width = img.shape[:2]
# 预处理图像
blob = cv2.dnn.blobFromImage(img, size=(300, 300), swapRB=True, crop=False)
net.setInput(blob)
detections = net.forward()
# 解析检测结果
boxes = []
confidences = []
class_ids = []
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > 0.5:
class_id = int(detections[0, 0, i, 1])
# 只保留人和车
if class_id == 1 or class_id == 3: # 1: person, 3: car
box = detections[0, 0, i, 3:7] * np.array([width, height, width, height])
(startX, startY, endX, endY) = box.astype("int")
boxes.append([startX, startY, endX - startX, endY - startY])
confidences.append(float(confidence))
class_ids.append(class_id)
# 应用非极大值抑制
indexes = cv2.dnn.NMSBoxes(boxes,