回归和分类算法
文章目录
A-线性回归算法:
如工资预测:

(01)线性回归的公式:

(02)线性回归误差分析:

如上为线性回归误差公式。

条件:(1)样本预测结果相互独立。(2)样本预测结果处于于相同的误差范围。(3)均值为0,且方差为θ∧2的正态分布(高斯分布),得到如下公式(μ=0):

然后通过对ε(i)进行替换,得到如下的式子:

(注释:某θ值与x拟合后得到p(x;θ)越接近于p(y)。)
(03)引入似然函数:
(目的:对全体样本进行预测估计)
针对不同的θ值=》L(θ)数值=》取max值时的θ向量组即为θ的最终理想解。(m为样本总数。)

(04)引入对数似然函数:
目的:将乘法计算过程转换为加法计算过程。

然后进行化简得到下式。

得到目标函数如下:

(05)行列式的计算:
对目标函数进行行列式的转换求解,如下:

(定理运用:a∧2=a∧T*a)
对J(θ)求导,进行极值的计算如下:

(定理运用:(ab+c)∧T=b∧T*a∧T+c∧T)
(06)行列式的求导:
进行求导的过程如下:

(定理运用:行列式求导知识)
令▽θJ(θ)=0,得到θ的理想解:

B-logistic回归算法:
(01)引入sigmoid函数:

以(θ∧T*X)为自变量得到下式:

(*)应用一分类:
然后根据 θ∧T得到相应的hθ(x)值,然后根据设定的概率区间对X进行分类。
(*)应用二理想解:
若θ∧T为未知理想解,使得hθ(x)趋近于0/1,则对g(θ∧T*x)进行求导,求其极值点,得到如下关系式:

C-梯度下降原理:
(*)实例分析:
(01)Normalize the data:

(02)J(θ0,θ1)线性关系的分析:
假设y与x为线性回归关系:

(03)根据线性回归的误差分析,得到代价函数:

代码实现部分:

测试样例:

(04)根据线性回归分析特点,对θ1和θ0求偏导式如下:
θ1:

θ0:

代码实现部分:
θ1:

θ0:

测试样例:
θ1:

θ0:

(05)引入“梯度”概念:


如图:
如图为cost=J(θ1,θ0)示意图(cost大于0,图示有误)。α为设定的步长,∂J(θ0,θ1)/∂θ0为梯度。
(06)设定边界值训练:
α,θ1,θ0,max_epochs,convergence_thres,cprev的设定和初始化采用预设值。
代码部分:

测试样例:

(07)cost与训练次数分析:
最优解样例:

附cost与训练次数关系图:
![[外链图片转存失败(img-cpg4TDgq-1564833503402)(C:\Users\爱拼才会赢\Desktop\python\线性回归实例\Snipaste_2019-08-02_20-21-40.jpg)]](https://i-blog.csdnimg.cn/blog_migrate/888818cc3bfcfa6ebee348e5780eaa63.jpeg)
本文深入探讨了线性回归和logistic回归算法,详细解析了线性回归的公式、误差分析、似然函数及对数似然函数,介绍了logistic回归中的sigmoid函数及其在分类任务中的应用。同时,讲解了梯度下降原理,并通过实例分析展示了数据标准化、代价函数的计算和参数优化的过程。
1377

被折叠的 条评论
为什么被折叠?



