UVA 10791 - Minimum Sum LCM(数论)

本文介绍了一种求解给定整数n的最小LCM(Least Common Multiple)的方法,即找到至少两个正整数的LCM等于n,并使它们的和最小。详细解释了求解过程,并提供了代码实现。

  Minimum Sum LCM 

\epsfbox{p10791.eps}

LCM (Least Common Multiple) of a set of integers is defined as the minimum number, which is a multiple of all integers of that set. It is interesting to note that any positive integer can be expressed as the LCM of a set of positive integers. For example 12 can be expressed as the LCM of 112 or1212 or 34 or 46 or 1234 etc.

In this problem, you will be given a positive integer N. You have to find out a set of at least two positive integers whose LCM is N. As infinite such sequences are possible, you have to pick the sequence whose summation of elements is minimum. We will be quite happy if you just print the summation of the elements of this set. So, for N = 12, you should print4+3 = 7 as LCM of 4 and 3 is 12 and 7 is the minimum possible summation.

Input 

The input file contains at most 100 test cases. Each test case consists of a positive integer N ( 1$ \le$N$ \le$231 - 1).

Input is terminated by a case where N = 0. This case should not be processed. There can be at most 100 test cases.

Output 

Output of each test case should consist of a line starting with `Case #' where # is the test case number. It should be followed by the summation as specified in the problem statement. Look at the output for sample input for details.

Sample Input 

 
12
10
5
0

Sample Output 

 
Case 1: 7
Case 2: 7
Case 3: 6
题意:给定一个n,求最小LCM。。LCM求法为,把n分解成几个乘数相加,要求这些乘数互质。

思路:先分解成全是质数p1^n1*p2^n2....pn^nn。最小和为p1^n1+p2^n2+...+pn^nn。

注意几个WA点。要用longlong。不然当输入为2147483647会输出2147483648.超范围。还有如果不能分解或者只能分解出一个因数答案应该为n+1.

代码:

#include <stdio.h>
#include <string.h>
#include <math.h>

long long n, ans, i, j, bo;
int main() {
	int t = 0;
	while (~scanf("%d", &n) && n) {
		long long save = n;
		ans = bo = 0;
		long long num = sqrt(n);
		for (i = 2; i <= num; i ++) {
			long long sum = 1;
			if (n % i == 0) {
				bo ++;
				while (n % i == 0) {
					n /= i;
					sum *= i;
				}
				ans += sum;
			}
		}
		if (n != 1)
			ans += n;
		if (bo < 2) {
			ans = save + 1;
		}
		printf("Case %d: %lld\n", ++ t, ans);
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值