(转)理解storm 进程内消息流(很好的一篇文章)

本文解释了Storm版本0.8/0.9如何实现工作进程内的内部消息传递,包括消息队列、线程间通信及配置参数。通过理解这些内部机制,可以优化Storm拓扑的性能。

FROM:http://www.michael-noll.com/blog/2013/06/21/understanding-storm-internal-message-buffers/

Understanding the Internal Message Buffers of Storm

JUN 21ST, 2013

Table of Contents
  • Internal messaging within Storm worker processes
  • Illustration
  • Detailed description
    • Worker processes
    • Executors
  • Where to go from here
    • How to configure Storm’s internal message buffers
    • How to configure Storm’s parallelism
    • Understand what’s going on in your Storm topology
    • Advice on performance tuning

When you are optimizing the performance of your Storm topologies it helps to understand how Storm’s internal message queues are configured and put to use. In this short article I will explain and illustrate how Storm version 0.8/0.9 implements the intra-worker communication that happens within a worker process and its associated executor threads.

Internal messaging within Storm worker processes

Terminology: I will use the terms  message and (Storm)  tuple interchangeably in the following sections.

When I say “internal messaging” I mean the messaging that happens within a worker process in Storm, which is communication that is restricted to happen within the same Storm machine/node. For this communication Storm relies on various message queues backed by LMAX Disruptor, which is a high performance inter-thread messaging library.

Note that this communication within the threads of a worker process is different from Storm’sinter-worker communication, which normally happens across machines and thus over the network. For the latter Storm uses ZeroMQ by default (in Storm 0.9 there is experimental support for Nettyas the network messaging backend). That is, ZeroMQ/Netty are used when a task in one worker process wants to send data to a task that runs in a worker process on different machine in the Storm cluster.

So for your reference:

  • Intra-worker communication in Storm (inter-thread on the same Storm node): LMAX Disruptor
  • Inter-worker communication (node-to-node across the network): ZeroMQ or Netty
  • Inter-topology communication: nothing built into Storm, you must take care of this yourself with e.g. a messaging system such as Kafka/RabbitMQ, a database, etc.

If you do not know what the differences are between Storm’s worker processes, executor threads and tasks please take a look at Understanding the Parallelism of a Storm Topology.

Illustration

Let us start with a picture before we discuss the nitty-gritty details in the next section.

Figure 1: Overview of a worker’s internal message queues in Storm. Queues related to a worker process are colored in red, queues related to the worker’s various executor threads are colored in green. For readability reasons I show only one worker process (though normally a single Storm node runs multiple such processes) and only one executor thread within that worker process (of which, again, there are usually many per worker process).

Detailed description

Now that you got a first glimpse of Storm’s intra-worker messaging setup we can discuss the details.

Worker processes

To manage its incoming and outgoing messages each worker process has a single receive thread that listens on the worker’s TCP port (as configured via supervisor.slots.ports). The parameter topology.receiver.buffer.size determines the batch size that the receive thread uses to place incoming messages into the incoming queues of the worker’s executor threads. Similarly, each worker has a single send thread that is responsible for reading messages from the worker’s transfer queue and sending them over the network to downstream consumers. The size of the transfer queue is configured via topology.transfer.buffer.size.

  • The topology.receiver.buffer.size is the maximum number of messages that are batched together at once for appending to an executor’s incoming queue by the worker receive thread (which reads the messages from the network) Setting this parameter too high may cause a lot of problems (“heartbeat thread gets starved, throughput plummets”). The default value is 8 elements, and the value must be a power of 2 (this requirement comes indirectly from LMAX Disruptor).
1
2
3
// Example: configuring via Java API
Config conf = new Config();
conf.put(Config.TOPOLOGY_RECEIVER_BUFFER_SIZE, 16); // default is 8
Note that  topology.receiver.buffer.size is in contrast to the other buffer size related parameters described in this article actually not configuring the size of an LMAX Disruptor queue. Rather it sets the size of a simple  ArrayList that is used to buffer incoming messages because in this specific case the data structure does not need to be shared with other threads, i.e. it is local to the worker’s receive thread. But because the content of this buffer is used to fill a Disruptor-backed queue (executor incoming queues) it must still be a power of 2. See  launch-receive-thread! in  backtype.storm.messaging.loader for details.
  • Each element of the transfer queue configured with topology.transfer.buffer.size is actually a list of tuples. The various executor send threads will batch outgoing tuples off their outgoing queues onto the transfer queue. The default value is 1024 elements.
1
2
// Example: configuring via Java API
conf.put(Config.TOPOLOGY_TRANSFER_BUFFER_SIZE, 32); // default is 1024

Executors

Each worker process controls one or more executor threads. Each executor thread has its ownincoming queue and outgoing queue. As described above, the worker process runs a dedicated worker receive thread that is responsible for moving incoming messages to the appropriate incoming queue of the worker’s various executor threads. Similarly, each executor has its dedicated send thread that moves an executor’s outgoing messages from its outgoing queue to the “parent” worker’s transfer queue. The sizes of the executors’ incoming and outgoing queues are configured via topology.executor.receive.buffer.size and topology.executor.send.buffer.size, respectively.

Each executor thread has a single thread that handles the user logic for the spout/bolt (i.e. your application code), and a single send thread which moves messages from the executor’s outgoing queue to the worker’s transfer queue.

  • The topology.executor.receive.buffer.size is the size of the incoming queue for an executor. Each element of this queue is a list of tuples. Here, tuples are appended in batch. The default value is 1024 elements, and the value must be a power of 2 (this requirement comes from LMAX Disruptor).
1
2
// Example: configuring via Java API
conf.put(Config.TOPOLOGY_EXECUTOR_RECEIVE_BUFFER_SIZE, 16384); // batched; default is 1024
  • The topology.executor.send.buffer.size is the size of the outgoing queue for an executor. Each element of this queue will contain a single tuple. The default value is 1024 elements, and the value must be a power of 2 (this requirement comes from LMAX Disruptor).
1
2
// Example: configuring via Java API
conf.put(Config.TOPOLOGY_EXECUTOR_SEND_BUFFER_SIZE, 16384); // individual tuples; default is 1024

Where to go from here

How to configure Storm’s internal message buffers

The various default values mentioned above are defined in conf/defaults.yaml. You can override these values globally in a Storm cluster’s conf/storm.yaml. You can also configure these parameters per individual Storm topology via backtype.storm.Config in Storm’s Java API.

How to configure Storm’s parallelism

The correct configuration of Storm’s message buffers is closely tied to the workload pattern of your topology as well as the configured parallelism of your topologies. See Understanding the Parallelism of a Storm Topology for more details about the latter.

Understand what’s going on in your Storm topology

The Storm UI is a good start to inspect key metrics of your running Storm topologies. For instance, it shows you the so-called “capacity” of a spout/bolt. The various metrics will help you decide whether your changes to the buffer-related configuration parameters described in this article had a positive or negative effect on the performance of your Storm topologies. See Running a Multi-Node Storm Cluster for details.

Apart from that you can also generate your own application metrics and track them with a tool like Graphite. See Installing and Running Graphite via RPM and Supervisord for details. It might also be worth checking out ooyala’s metrics_storm project on GitHub (I haven’t used it yet).

Advice on performance tuning

Watch Nathan Marz’s talk on Tuning and Productionization of Storm.

The TL;DR version is: Try the following settings as a first start and see whether it improves the performance of your Storm topology.

1
2
3
4
conf.put(Config.TOPOLOGY_RECEIVER_BUFFER_SIZE,             8);
conf.put(Config.TOPOLOGY_TRANSFER_BUFFER_SIZE,            32);
conf.put(Config.TOPOLOGY_EXECUTOR_RECEIVE_BUFFER_SIZE, 16384);
conf.put(Config.TOPOLOGY_EXECUTOR_SEND_BUFFER_SIZE,    16384);

 

Interested in more? You can  subscribe to this blog, or  follow me on Twitter.

Posted by Michael G. Noll Jun 21st, 2013  Filed under ProgrammingStorm

FROM:http://www.michael-noll.com/blog/2013/06/21/understanding-storm-internal-message-buffers/

源码来自:https://pan.quark.cn/s/7a757c0c80ca 《在Neovim中运用Lua的详尽教程》在当代文本编辑器领域,Neovim凭借其卓越的性能、可扩展性以及高度可定制的特点,赢得了程序开发者的广泛青睐。 其中,Lua语言的融入更是为Neovim注入了强大的活力。 本指南将深入剖析如何在Neovim中高效地运用Lua进行配置和插件开发,助你充分发挥这一先进功能的潜力。 一、Lua为何成为Neovim的优选方案经典的Vim脚本语言(Vimscript)虽然功能完备,但其语法结构与现代化编程语言相比显得较为复杂。 与此形成对比的是,Lua是一种精简、轻量且性能卓越的脚本语言,具备易于掌握、易于集成的特点。 因此,Neovim选择Lua作为其核心扩展语言,使得配置和插件开发过程变得更加直观和便捷。 二、安装与设置在Neovim中启用Lua支持通常十分简便,因为Lua是Neovim的固有组件。 然而,为了获得最佳体验,我们建议升级至Neovim的最新版本。 可以通过`vim-plug`或`dein.vim`等包管理工具来安装和管理Lua插件。 三、Lua基础在着手编写Neovim的Lua配置之前,需要对Lua语言的基础语法有所掌握。 Lua支持变量、函数、控制流、表(类似于数组和键值对映射)等核心概念。 它的语法设计简洁明了,便于理解和应用。 例如,定义一个变量并赋值:```lualocal myVariable = "Hello, Neovim!"```四、Lua在Neovim中的实际应用1. 配置文件:Neovim的初始化文件`.vimrc`能够完全采用Lua语言编写,只需在文件首部声明`set runtimepath^=~/.config/nvim ini...
基于STM32 F4的永磁同步电机无位置传感器控制策略研究内容概要:本文围绕基于STM32 F4的永磁同步电机(PMSM)无位置传感器控制策略展开研究,重点探讨在不使用机械式位置传感器的情况下,如何通过算法实现对电机子位置和速度的精确估算与控制。文中结合STM32 F4高性能微控制器平台,采用如滑模观测器(SMO)、扩展卡尔曼滤波(EKF)或高频注入法等先进观测技术,实现对电机反电动势或磁链的实时估算,进而完成磁场定向控制(FOC)。研究涵盖了控制算法设计、系统建模、仿真验证(可能使用Simulink)以及在嵌入式平台上的代码实现与实验测试,旨在提高电机驱动系统的可靠性、降低成本并增强环境适应性。; 适合人群:具备一定电机控制理论基础和嵌入式开发经验的电气工程、自动化及相关专业的研究生、科研人员及从事电机驱动开发的工程师;熟悉C语言和MATLAB/Simulink工具者更佳。; 使用场景及目标:①为永磁同步电机驱动系统在高端制造、新能源汽车、家用电器等领域提供无位置传感器解决方案的设计参考;②指导开发者在STM32平台上实现高性能FOC控制算法,掌握位置观测器的设计与调试方法;③推动电机控制技术向低成本、高可靠方向发展。; 其他说明:该研究强调理论与实践结合,不仅包含算法仿真,还涉及实际硬件平台的部署与测试,建议读者在学习过程中配合使用STM32开发板和PMSM电机进行实操验证,以深入理解控制策略的动态响应与鲁棒性问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值