CF--FLOYD的灵活应用

本文介绍了一个基于图论的游戏挑战,玩家需要通过Floyd算法计算并输出每一步操作前图中所有顶点对之间的最短路径总和。文章提供了完整的AC代码实现,并详细解释了如何将Floyd算法与游戏需求相结合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Greg has a weighed directed graph, consisting of n vertices. In this graph any pair of distinct vertices has an edge between them in both directions. Greg loves playing with the graph and now he has invented a new game:

  • The game consists of n steps.
  • On the i-th step Greg removes vertex number xi from the graph. As Greg removes a vertex, he also removes all the edges that go in and out of this vertex.
  • Before executing each step, Greg wants to know the sum of lengths of the shortest paths between all pairs of the remaining vertices. The shortest path can go through any remaining vertex. In other words, if we assume that d(i, v, u) is the shortest path between vertices v and u in the graph that formed before deleting vertex xi, then Greg wants to know the value of the following sum: .

Help Greg, print the value of the required sum before each step.

Input

The first line contains integer n (1 ≤ n ≤ 500) — the number of vertices in the graph.

Next n lines contain n integers each — the graph adjacency matrix: the j-th number in the i-th line aij (1 ≤ aij ≤ 105, aii = 0) represents the weight of the edge that goes from vertex i to vertex j.

The next line contains n distinct integers: x1, x2, ..., xn (1 ≤ xi ≤ n) — the vertices that Greg deletes.

Output

Print n integers — the i-th number equals the required sum before the i-th step.

Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cincout streams of the %I64dspecifier.

Sample test(s)
input
1
0
1
output
0 
input
2
0 5
4 0
1 2
output
9 0 
input
4
0 3 1 1
6 0 400 1
2 4 0 1
1 1 1 0
4 1 2 3
output
17 23 404 0 


AC代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <sstream>
#include <vector>
#include <stack>
#include <map>
#include <queue>
#include <set>
#include <iostream>
#include <stdlib.h>
#include <cctype>
#define rep1(i,s,e) for(int i = (s);i<(e);++i)
#define rep2(i,s,e) for(int i = (s);i<=(e);++i)
#define maxn 600
#define INF 1000000007
#define ls (root<<1)
#define rs (root<<1|1)
#define M  L+(R-L)/2
using namespace std;

int n,m;
long long  d[maxn][maxn];
long long sum[maxn];
int del[maxn];
/*
思路:在floyd算法中,三重循环的最外面一重对k的循环的意思
就是增加节点k后更新一遍最短路(更新的最短路都经过节点k)。
那么就可以把最外面一重循环换成v[N,N-1,....,1],
同样做floyd即可

按照题意是顺序删除反向看就是逆向插入!!!!!!!!
*/
int main()
{
   // freopen("in.txt","r",stdin);
    while(scanf("%d",&n)==1)
    {
        memset(sum,0,sizeof(sum));
        memset(del,0,sizeof(del));
        for(int i = 1;i<=n;++i)
         for(int j = 1;j<=n;++j)
         {
             d[i][j] = INF;
         }

        for(int i = 1;i<=n;++i)
         for(int j = 1;j<=n;++j)
         {
             scanf("%I64d",&d[i][j]);
         }

    for(int i = 1;i<=n;++i)
    scanf("%d",&del[i]);

         //floyd的算法的最外一层是表示把n个点一次插入到图中更新最短路
      int temp  = n;
      for(int k = n;k>=1;--k) //floyd
      {
        for(int i = 1;i<=n;++i)
          for(int j = 1;j<=n;++j)
            d[i][j] = min(d[i][j],d[i][del[k]]+d[del[k]][j]);


        for(int i = n;i>=k;--i)
          for(int j = n;j>=k;--j)
             sum[k]+= d[del[i]][del[j]];
      }

      for(int i = 1;i<=n;++i)
      {
        if(i!= 1)
        printf(" %I64d",sum[i]);
        else
        printf("%I64d",sum[i]);
      }
      printf("\n");

    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值