欧几里得算法

int gcd(int a,int b)
{
    int t;
    while(b)//当b为0(也就是t为0)的时候则代表a可以整除b那么b就是最大公约数
    {
        t=a%b;
        a=b;
        b=t;
    }
    return a;//结束while循环后b的值已经付给了a所以返回a
}

辗转相除,又名 欧几里德 算法(Euclidean algorithm)乃求两个正整数之最大公因子的算法

辗转相除法基于如下原理:两个整数的最大公约数等于其中较小的数和两数的差的最大公约数。例如,252和105的最大公约数是21(252 = 21 × 12105 = 21 × 5);因为252 − 105 = 147,所以147和105的最大公约数也是21。在这个过程中,较大的数缩小了,所以继续进行同样的计算可以不断缩小这两个数直至其中一个变成零。这时,所剩下的还没有变成零的数就是两数的最大公约数。由辗转相除法也可以推出,两数的最大公约数可以用两数的整数倍相加来表示,如21 = 5 × 105 + (−2) × 252。这个重要的等式叫做贝祖等式

令c=gcd(a,b),a>=b,
令r=a mod b
设a=kc,b=jc,则k,j互素,否则c不是最大公约数
据上,r=a-mb=kc-mjc=(k-mj)c
可知r也是c的倍数,且k-mj与j互素,否则与前述k,j互素矛盾,
由此可知,b与r的最大公约数也是c,即gcd(a,b)=gcd(b,a mod b),得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值