每块代码作用在注释中已经给出:
#准备数据集
import torch
import torch.nn as nn # 替换掉原来的 import nn
import torchvision
from keras.src.metrics.accuracy_metrics import accuracy
from torch.nn import Conv2d, MaxPool2d, Sequential
from torch.utils.data import DataLoader
from model import *
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image #注意这里是PIL型。我们要把图片转换成numpy型
#准备数据集
train_data=torchvision.datasets.CIFAR10(root="../data",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data=torchvision.datasets.CIFAR10(root="../data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
#length 长度
train_data_size=len(train_data)
test_data_size=len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
#利用Dataloader加载数据集
train_dataloader=DataLoader(train_data,batch_size=64)
test_dataloader=DataLoader(test_data,batch_size=64)
#创建模型
aa=Aaax()
#损失函数
loss_fn=nn.CrossEntropyLoss()
#优化器
learning_rate=1e-2 #(0.01)
optimizer=torch.optim.SGD(aa.parameters(),lr=learning_rate)
#设置训练网络的一些参数
total_train_step=0 #记录训练的次数
total_test_step=0 #记录测试的次数
epoch=10 #训练的轮数
#添加tensorboard
writer=SummaryWriter("../logs_train")
for i in range(epoch):
print("------第{}轮训练开始------".format(i+1))
#训练步骤开始
for data in train_dataloader:
imgs,targets=data
output=aa(imgs)
loss=loss_fn(output,targets)
#优化器优化模型
optimizer.zero_grad() #梯度清零
loss.backward() #反向传播,得到每个参数节点的梯度
optimizer.step() #对参数优化
total_train_step+=1
if total_train_step%100==0: # 逢百打印
print("训练次数:{},loss:{}".format(total_train_step,loss))
writer.add_scalar("train_loss",loss.item(),total_train_step)
#测试步骤开始 :在测试集上再跑一遍,通过看测试集上的损失来评估模型的性能
total_test_loss=0
total_accuracy=0
with torch.no_grad(): #测试时要注意不要有梯度!!!
for data in test_dataloader:
imgs,targets=data
output=aa(imgs)
loss=loss_fn(output,targets)
total_test_loss+=loss.item()
#计算准确率
accuracy=(output.argmax(1)==targets).sum() #计算正确的个数之和
total_accuracy+=accuracy
print("整体测试集上的loss:{}".format(total_test_loss))
print("整体测试集上的准确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
writer.add_scalar("test_accuracy",total_accuracy,total_test_step)
total_test_step+=1
torch.save(aa,"aa_{}.pth".format(i))
print("模型已保存")
writer.close()
模型:
import torch
from torch import nn
# 搭建神经网络 CIFAR-10 有十个类别,所以要写一个十分类的神经网络
class Aaax(nn.Module): # 将 nn.module 改为 nn.Module
def __init__(self):
super(Aaax, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64 * 4 * 4, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
# if __name__ == '__main__':
# aa = Aaax()
# input = torch.ones((64, 3, 32, 32)) # batch size, channel, 32*32 dimensions
# output = aa(input)
# print(output.shape)

被折叠的 条评论
为什么被折叠?



