题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)
思路
对于本题,前提只有 一次 1阶或者2阶的跳法。
a.如果两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1);
b.假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2)
c.由a\b假设可以得出总跳法为: f(n) = f(n-1) + f(n-2)
d.然后通过实际的情况可以得出:只有一阶的时候 f(1) = 1 ,只有两阶的时候可以有 f(2) = 2
e.可以发现最终得出的是一个斐波那契数列:
注意
本题不容易发现其中暗藏的斐波那契数列规律,需要在平时的学习中多多积累
代码
class Solution {
public:
int jumpFloor(int number) {
if (number <= 0) {
return 0;
}
if (number == 1) {
return 1;
}
if (number == 2) {
return 2;
}
int first = 1, second = 2, third = 0;
for (int i = 3; i <= number; i++) {
third = first + second;
first = second;
second = third;
}
return third;
}
};