错排公式理解和应用 HDU2048 2049 都是这种应用

本文介绍了错排问题的递推公式及通项公式,并给出了两种不同的错排公式表达方式。通过递推公式M(n)=(n-1)[M(n-2)+M(n-1)]和特殊值M(1)=0,M(2)=1,可以求解任意数量元素的错排数目。此外,还提供了基于级数知识简化得到的优美公式Dn=[n!/e+0.5],便于计算大量元素的错排情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用M(n)表示,那么M(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推.
第一步,把第n个元素放在一个位置,比如位置k,一共有n-1种方法;
第二步,放编号为k的元素,这时有两种情况⑴把它放到位置n,那么,对于剩下的n-1个元素,由于第k个元素放到了位置n,剩下n-2个元素就有M(n-2)种方法;⑵第k个元素不把它放到位置n,这时,对于这n-1个元素,有M(n-1)种方法;
综上得到
M(n)=(n-1)[M(n-2)+M(n-1)]
特殊地,M⑴=0,M⑵=1;
化简后的通项公式:


错排公式为M(n)=n!(1/2!-1/3!+…..+(-1)^n/n!)
书上的错排公式为Dn=n!(1/0!-1/1!+1/2!-1/3!-.....+(-1)^n/n!)(注:0!=1,参见阶乘),此公式算n很大时就很不方便.后来发现它可以用级数知识化简为1个优美的式子Dn=[n!/e+0.5] (e,即自然对数的底 ,[x]为取整函数即x向下取整.)

e=2.71828


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值